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ABSTRACT 

A six degree of freedom, 20-state model of two spacecraft rendezvous is 

developed, one of which was controlled and the other considered to be passively 

tumbling.  Solutions that minimize a series of performance indices are obtained for the 

problem of close approach, up to the point of contact, using a direct optimal control 

method.  The solution is then verified as optimal by way of an indirect method based on 

the Minimum Principle.  Next, a trajectory generation method for spacecraft reorientation 

is developed, based on a quaternion construction of Inverse Dynamics in the Virtual 

Domain.  This new construction enables development of an Inverse Dynamics in the 

Virtual Domain rapid-trajectory generation method that exploits the concept of 

decoupling space and time, for the problem of a spacecraft performing a close approach 

maneuver to a tumbling object.  Finally, the advantages of the new method are 

demonstrated through simulated scenarios that employ two distinct concepts of closed-

loop feedback.  The benefits seen by Inverse Dynamics in the Virtual Domain methods 

include the rapid computational time that allows a feasible solution to be generated, 

potentially onboard a spacecraft and in closed-loop.  Although the Inverse Dynamics in 

the Virtual Domain method cannot match the true optimal solution, it has several 

advantages.  Rapid computational time and the ability to reshape itself when provided 

updated state variable information reinforce the overall robustness of the method for safe 

trajectory planning.  The novel trajectory generation method developed is tested using 

Monte Carlo methods to demonstrate its ability to handle realistic situations with varying 

initial conditions.   
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I. INTRODUCTION 

The rendezvous problem of two spacecraft orbiting the earth has been addressed 

in numerous publications, research thrusts and desired mission capabilities. Rendezvous 

technology has also evolved with small spacecraft development, such as the National 

Aeronautics and Space Administration’s (NASA) DART (NASA 2004), Air Force 

Research Laboratory’s (AFRL) (Experimental Satellite System) XSS-10 (Davis 2003) 

and XSS-11 (AFRL 2005), Naval Research Laboratory (NRL) SUMO (Bosse 2004), and 

Defense Advanced Research Projects Agency’s (DARPA) Orbital Express (OE) 

(Kennedy 2008).  In particular, the AFRL Space Vehicle Directorate at Kirtland Air 

Force Base in New Mexico developed the XSS-11 in order to exhibit the ability for a 

small satellite to autonomously plan and rendezvous with a passive and cooperative 

Resident Space Object (RSO) in low Earth orbit (LEO).  XSS-10 was a simple proximity 

mission around the upper stage that it was boosted into orbit on.  XSS-11 demonstrated 

the ability to change orbits and intercept other nonrelated objects.  The use of micro-

satellites to inspect, service, repair, and refuel larger spacecraft is a long-term goal.  The 

closest the XSS-11 approached and maneuvered around another object in space was 

approximately 500 meters.  In addition, DARPA’s OE Advanced Technology 

Demonstration Program validated the technology and techniques for on-orbit refueling 

and reconfiguration of two satellites.  The mission, conducted in 2007, performed several 

autonomous rendezvous and capture scenarios, including component exchange and 

propellant transfer events. The existence of these programs demonstrates that there is a 

need for a robust and effective autonomous close proximity control algorithm for 

multiple small spacecraft.  Still, even with the investment in the aforementioned 

missions, spacecraft proximity operations that have any dynamic tasking attributes are 

currently executed with humans in the loop, relying heavily on an extensive operations 

staff to plan and oversee the maneuvers, and performing maneuvers while in 

communication with ground stations.  This approach is extremely cumbersome with 

respect to time, manpower and overall operational footprint.   
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From a historical point of view, one of the first attempts to recapture a satellite in 

orbit was in 1992 with Intelsat6 from the Space Shuttle (Broad 1992).  In this case, jet 

thrusters on both the shuttle and the satellite were repeatedly fired during the three-day 

operation to bring the two spacecraft to a complex orbital rendezvous.  The ground 

controllers of Intelsat had slowed the rotation of satellite to 0.67 revolutions per minute 

so it would be easier to grasp.  Still, astronauts in spacesuits tried and failed twice capture 

the satellite from orbit and move it into the payload bay of the space shuttle Endeavour.  

Success was eventually realized on the third try. 

The vast majority of previous research pertaining to operations that focused on 

rendezvous with an uncontrolled rotating object has only addressed the translational 

challenges (Jacobsen, Lee, Zhu and Dubowsky 2002; Matsumoto, Dubowsky, Jacobsen, 

and Ohkami 2003a and 2003b).  This also involved segmented maneuvers and only 

matching the translational position and velocity of a point mass with that of a docking 

point on a tumbling RSO.  Nolet, Kong, and Miller used a simple glideslope algorithm 

for the purpose of attempting to generate trajectories for the two-dimensional (2D) case 

with hopes of implementation on the Massachusetts Institute of Technology SPHERES 

testbed (2004).  Huntington (Huntington and Rao 2008b) and Singh (Singh and Hadaegh 

2001) independently researched proximity operations but with cooperative agents. 

Henshaw mentions optimal rendezvous with a tumbling object, but there is no formal 

presentation of the results using the Minimum Principle (MP) (Henshaw 2003).  

Henshaw’s method is a variation trajectory planner capable of planning large timescale 

maneuvers (on the order of 10,000+ seconds to several years), therefore there is no 

discussion of the computational times involved to obtain a solution. 

The optimal satellite reorientation problem alone is of general interest to many in 

the field of aerospace engineering.  Its interest increases as we start to consider 

autonomous rendezvous and close approach mission scenarios that couple both attitude 

and translational dynamics with the desire to match both translational and angular motion 

in preparation for docking.  The available literature on optimal and efficient spacecraft 

reorientation alone is extensive (Junkins and Turner 1986; Bilimoria and Wie 1993; 

Vadali and Junkins 1984). Many civilian and military space missions need to have agile 
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attitude maneuver capability.  For instance, Tactical Satellite (TacSat) 3 was intended to 

demonstrate responsive delivery of information to operational users (Davis and Straight 

2006). Due to the satellite’s Low Earth Orbit, the timeline for tasking, slewing and 

disseminating data is greatly reduced. Other challenges include the fact that the tasking 

can be modified at any moment until after a short period of time with the ground station 

who is uploading the tasking and the idea that TacSat must autonomously slew to the 

target, collect and process the data and then down link the data directly to the customer 

who is not collocated with the ground station. Current real time feedback controls are not 

optimized for minimum time (Vadali and Junkins 1984).  These challenges lend 

themselves to the need for the ability to rapidly generate feasible trajectories that are 

optimized for minimum time. 

The preceding examples bring about a very interesting concept: what if only a 

feasible solution is desired, with little or no regard for maneuver time (aside from a 

maximum final time) or power used, where mission success is the only criterion 

evaluated?  Is the new metric for optimization based on computational time or 

robustness?  Such is the case for the reorientation of a Tactical Satellite (TacSat) (Davis 

and Straight 2006).  The desire is to perform the mission within certain operating 

constraints.  If the satellite happens to reorient in minimum time, nothing will be gained 

(as long as all other constraints on the dynamics are met) because the target or the 

downlink may not be in view, or the elevation mask to the target may not be cleared.  For 

certain missions, due to target spacing, access times and general Concept of Operations 

(CONOPS), a hurry-up and wait mentality will not benefit the mission as much as rapidly 

generating the trajectory for the satellite to be dynamically tasked at the latest possible 

instant (not orbits ahead of time).  In order for the satellite to perform the maneuver, with 

potentially target locations dynamically changing up until the point the link to the 

groundstation is broken, a feasible trajectory needs to be calculated in the minimum 

amount of time possible before the first target acquisition.  In essence, there is no time to 

wait for a detailed optimal solution to be computed, but the implementation of the best 

optimized solution at that time is of utmost importance.  This concept will be revisited 

throughout the different subsections of this dissertation where the rapid generation of the 
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solution and robustness of always having a feasible trajectory to follow, is considered 

more important than the performance index (PI), such as minimum time, minimum 

energy, etc., to be optimized.    

The entire mission of rendezvous and docking can be broken down into several 

components and subcomponents.  Figure 1, modified from Fehse (2003), illustrates the 

various segments of the mission.   

 

Figure 1.   Breakdown of rendezvous and docking mission elements (After Fehse 2003). 

The work in this dissertation revolves around the desire to efficiently perform 

close range rendezvous maneuvers to a tumbling spacecraft for the purpose of close 

inspection or docking.  The problem of docking, contact and grappling once the chaser 
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satellite is in position is currently being explored by NRL (Creamer 2007; Tasker and 

Henshaw 2008).  Among others, research by McCamish (2007) addresses the problem of 

efficiently and safely taking a satellite from far range into close proximity, or closing, to 

an RSO, albeit a nontumbling one.  Therefore, this research fits in the realm of close 

approach trajectory generation, or more specifically final approach, for the purpose of 

close inspection or docking with a tumbling RSO.  Launch and Phasing (maneuvering to 

match orbital elements and far approach) are assumed to have already taken place.  

Specifically, adapting the terminology set forth by Nolet (2007), this is subset of the 

terminal phase, starting ~10m from the RSO up until docking contact has been initiated.  

In concert with previous research in this area, it is not the intent to advance navigation 

techniques for determining the attributes of a tumbling RSO, therefore it assumes that 

exact knowledge of the RSO states are available.  Complementary research efforts are 

looking at the problem of determining the states of an RSO (Jasiobedski, Greenspan and 

Roth 2001; Tsuda and Nakasuka 2003).  An exhaustive list of guidance, navigation & 

control (GNC) architecture efforts related to rendezvous can be obtained in Nolet (2007).  

The specific research addressed here currently has direct application to a specific type of 

problem scenario posed by Nolet (2007) to rendezvous with a target that is “drifting and 

tumbling” as defined below: 

Target drifting or tumbling: it is able to communicate its states, but has no 
control authority on its displacements and attitude (e.g., docking with a 
fuel-depleted target with no reaction wheels). 

Targets that are fully cooperative or able to communicate and control attitude 

information would also be candidates as considered by Romano (Romano and Hall 2006; 

Romano, Friedman and Shay 2007).  This research would be coupled with advanced 

navigation methods to attempt to explore scenarios where there is no information sharing 

between satellites as listed below (Nolet 2007): 

Target not cooperating:  

• the target has no control authority, and no communication is 
occurring (e.g., docking with a dead satellite); 
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• the target is actively trying to escape the chaser, and no 
communication is occurring (e.g., military applications). 

Regardless of the specific application and overall GNC architecture, the trajectory 

generation methods will assume to have state information regarding the attitude and 

position of the tumbling RSO.  

This dissertation is organized as follows: Chapter I contains a summary of past 

and current research on this topic and an outline of several concepts employed in the 

dissertation.  Chapter II focuses on the 6 DoF spacecraft rendezvous problem while 

formulating the dynamic equations for matching points of interest on two separate 

spacecraft, one of which is controlled, the other of which is tumbling.  The optimal 

control problem is addressed, resulting in deriving the adjoint equations and 

transversality conditions needed to verify optimality.  Solutions are obtained using a 

direct method and are verified using indirect shooting methods based on the MP 

(Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko 1964).  The purpose of this 

development is to provide a baseline solution to the formulated close approach problem 

that has not yet been addressed in research.  Chapter III expands on the results of Chapter 

II increasing the complexity of the problem.  The same approach is taken, but the 

translational actuators (thrusters) are body mounted, the inertia matrix of the tumbling 

object is no longer taken to be identity and the end constraints require not only matching 

position and velocity of the spacecraft docking points, but also their attitude and angular 

velocity.  Chapter IV introduces the concept of Inverse Dynamics in the Virtual Domain 

(IDVD) in more detail as it applies to spacecraft reorientation, a key enabler for 

operations with respect to a tumbling object that has not been addressed so far.  Chapter 

V develops a method for rapid trajectory generation based on IDVD and applies to the 

spacecraft rendezvous problem.  Chapter VI contains analysis and simulations of the 

trajectories generated using the methods developed.  This includes comparing the 

performance to simplified, 2D cases that exist in literature and evaluating the overall 

effectiveness when subjected to the tracking challenges of current realistic systems.  The 

chapter concludes with ideas for implementation in closed-loop architecture that would 

exploit the calculation and robustness advantages of IDVD methods. 
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A. OPTIMAL CONTROL PROBLEM FORMULATION FOR CLOSE 
RENDEZVOUS AND DOCKING 

Previously, the optimal control for rendezvous with a tumbling object has only 

been studied in 2D (Ma, Ma and Shashikanth 2007) with very little analysis.  Studying 

the optimal solution of a given problem also entails verifying its optimality.  This is done 

through rigorous analysis of the states, costates and how they relate to the MP.  This 

research formulates the three-dimensional (3D) problem and utilizes a direct collocation 

method (specifically a pseudospectral method) to obtain a solution, which is then 

validated using an indirect method based on the MP.  Although direct collocation 

methods enable the generation of an optimal solution (while indirect methods have a very 

limited radius of convergence), they are extremely computationally intensive and require 

a significant amount of time to converge (Yakimenko, Xu and Basset 2008, Boyarko, 

Yakimenko and Romano 2009a and 2009b).  Therefore, other rapid-trajectory generation 

techniques are developed, while using the optimal solution as a baseline for comparison. 

B. INVERSE DYNAMICS IN THE VIRTUAL DOMAIN 

1. The Concept of Inverse Dynamics in the Virtual Domain 

On top of having an extremely large computational time, direct collocation 

methods may also converge to sub-optimal solution if the number of nodes is not 

sufficient (Yakimenko et al. 2008; Boyarko et al. 2009a and 2009b).  In addition to that, 

the optimal solution does not have an analytical representation, which may pose problems 

when trying to implement it using a feed-forward scheme of suggested control commands 

(Yakimenko et al. 2008; Boyarko et al. 2009a and 2009b).  Furthermore, the placement of 

nodes by a direct collocation method that represent the solution are not flexible can cause 

problems when trying to interpolate complex control solutions that are not necessarily 

continuous (Hurni 2009). 

This research pursues another approach exploiting the general idea of the direct 

optimization methods of calculus of variations together with an inverse dynamics 

approach. In particular, polynomials are used as basis functions to generate trajectories 

that can be traversed according to a computed analytic speed profile. An abstract 
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argument is used that allows the trajectory to be decoupled in space and time, while 

always resulting in a trajectory that will reach the desired endpoint conditions. The 

resulting quasi-optimal trajectory solution is capable of being generated (and updated) 

rapidly because of the reduction in the number of varied parameters due to the restriction 

on the trajectory structure by specifying a polynomial basis. Although this method lacks 

some flexibility due to the predefined structure, it provides a feasible solution that 

satisfied the endpoint constraints on the trajectory at every iteration, even when the initial 

conditions change due to disturbances or delays. Specific applications include scenarios, 

where derivative conditions on beginning and ending states need to be met, such as 

tracking missions, docking missions and other missions that are not necessarily rest-to-

rest maneuvers.  It also has application in areas, where computational time and the ability 

to immediately employ the best available solution at any given time, is heavily weighted 

as part of the overall PI of the solution. 

2. Attitude Trajectory Generation 

The goal of this research is to provide a method to determine a feasible attitude 

trajectory solution that meets endpoint requirements and dynamic constraints while 

performing a good overall maneuver relatively to a given cost function. Also, the method 

should work for any terminal conditions including nonrest to nonrest maneuvers. The 

major requirement is that the method must focus on providing a rapid, potentially real 

time solution as opposed to off-line computations even if it requires some sacrifices in 

optimality.  This methods developed here are coupled with methods developed in a later 

section for the translational trajectory generation, providing the complete solution needed 

for close approach and docking with a tumbling RSO. 

3. Translational Trajectory Generation 

Trajectory generation by IDVD has been used in the past for aeronautical 

applications where the only two frames that needed consideration were the inertial and 

body frames (Yakimenko et al. 2008; Yakimenko and Slegers 2009).  This research 

utilizes the concept of IDVD in the orbital frame fixed at the RSO (an intermediate frame 

between the inertial and body frame) and exploiting the Clossey-Wilshire Equations of 
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relative motion.  This allows constructing the problem to analytically set the position and 

rate values of the states in the specific frame of interest, ensuring a maneuver that will 

perform the desired close approach maneuver with respect to the RSO, allowing for rapid 

trajectory reshaping or reoptimizing and reducing overall relative error.  The use of a 

speed factor of a specific form (having an analytical expression for the integral of the 

inverse function), also allows flexibility in setting the node points at specific time 

intervals.  This new method of rapid-trajectory generation allows the computation of an 

optimized, feasible, safe trajectory for spacecraft rendezvous requiring significantly less 

computational time than current methods. 

C. SCOPE OF THE DISSERTATION 

This dissertation advances the body of knowledge with respect to guidance of a 

spacecraft to rendezvous and dock with a tumbling object.  In particular, the main new 

contributions of this dissertation are: 

1. The analytical formulation of the optimal control problem is presented with 

respect to a spacecraft performing a controlled approach in 3D to a tumbling 

object for the purpose of rendezvous and docking.  A baseline optimal 

solution is presented using pseudospectral methods and verified the necessary 

conditions for optimality based on the Minimum Principle coupled with an 

indirect shooting method.  

2. An analytic quaternion trajectory is formulated using a 5th and 7th order 

Bezier Polynomial.  Derivatives are formulated and applied in the virtual 

domain providing an attitude trajectory generation technique that can 

automatically match specified derivative values at the endpoints while varying 

the speed across the spatial trajectory.  This formulation is then applied for 

rapid trajectory generation, significantly decreasing the computational time. 

3. The analytic quaternion trajectory approach based on Bezier polynomials is 

coupled with a translational polynomial scheme to create a novel trajectory 

generation scheme for the close approach with a tumbling object.  The method 

is extremely flexible allowing for real time reshaping of the trajectory based 
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on dynamically changing end constraints.  Also, by incorporating a speed 

factor of a particular form, this method can provide continuous mapping from 

the virtual and time domains.  Analysis shows that a trajectory can be 

calculated that is within ~10% of the optimal trajectory, but only requiring a 

fraction (~0.5%) of the computational time. 

4. The IDVD method is incorporated in different GNC architecture schemes to 

demonstrate its flexibility.  An IDVD reshaping method is created and 

implemented in a real time rapid-trajectory generator that incorporates the 

most current knowledge of the RSO states.  A hybrid method, using a 

combination of recalculating and reoptimizing the solution as well as 

reshaping based on current RSO state knowledge, is developed and 

demonstrated. 
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II. FORMULATION AND ANALYSIS OF MATCHING POINTS OF 
INTEREST IN TWO-SPACECRAFT FOR OPTIMAL 

RENDEZVOUS  

From the theoretical standpoint, this chapter elaborates on the previous work by 

Ma (Ma et al. 2007), who has studied the minimum-control effort problem for a planar 

rendezvous to a tumbling object (with only three states, coordinates x and y, and heading 

angle θ), neglecting any path constraints and relative motion dynamics pertinent to 

proximity space operations. The Sakawa-Shindo algorithm was used for calculating the 

optimal control. This chapter expands the scope by taking into account the proximity 

motion dynamics, considering the full six DoF model, and determining both the 

minimum time and the quadratic formulation of minimum-control (energy) effort solution 

of the rendezvous of two satellites. It also features a comparison of the solutions obtained 

using one of the prominent direct collocation methods with the truly optimal solutions 

obtained using the MP. Another section of this dissertation takes an even further step and 

considers three different PIs, adding additional constraints to match terminal attitude and 

angular dynamics, along with position and velocity. 

A. TWO-SPACECRAFT RENDEZVOUS MODELING AND OPTIMIZATION 
PROBLEM FORMULATION 

This section develops a model of target-chaser rendezvous. Figures 2 and 3 show 

a graphical representation of the problem. The center of the orbit frame is fixed to the 

center of mass (CM) of the tumbling RSO. The x axis points toward the Zenith. The y 

axis lies along the velocity vector of the RSO (assuming circular orbit), and the z axis lies 

along the orbit normal of the RSO. We start from the arbitrary relative position (Figure 2) 

and attempt to bring two spacecraft together for docking (Figure 3). 
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Figure 2.   Depiction of the spacecraft rendezvous problem. 

 

Figure 3.   The desired final state of two spacecraft system. 
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The set of notations to be used in this model (some of which are shown on Figures 

2 and 3) include: 

m    the mass of the chaser spacecraft; 

T
id , , ,i x y z=   the position vector of the target docking point with respect to the  

   target CM expressed in the target body frame; 

C
id , , ,i x y z=   the position vector of the chaser docking point with respect to the  

   chaser CM expressed in the chaser body frame; 

x , y , z   the x, y, and z position of a chaser spacecraft CM in the   

   Hill’s  coordinate frame; 

x� , y� , z�   the x, y, and z component of the velocity of chaser spacecraft  

   center of  mass in the Hill’s coordinate frame; 

C
iω , , ,i x y z=   the x, y, and z component of the angular velocity of the chaser  

   spacecraft  with respect to the inertial frame, expressed in the  

   chaser spacecraft  principal body coordinate frame; 

T
iω , , ,i x y z=   the x, y, and z component of the angular velocity of the target  

   spacecraft with respect to the inertial frame, expressed in the target 

   spacecraft principal body coordinate frame; 

O C
iω , , ,i x y z=  the x, y, and z component of the angular velocity of the chaser  

   spacecraft with respect to the orbital frame, expressed in the chaser 

   spacecraft  principal body coordinate frame; 

O T
iω , , ,i x y z=  the x, y, and z component of the angular velocity of the target  

   spacecraft with respect to the orbital frame, expressed in the target  

   spacecraft principal body coordinate frame; 

C
iq , 1, 2,3,4i =  the components of the quaternion, representing rotation from the  

   orbital to chaser body frame; 
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T
iq , 1, 2,3,4i =  the components of the quaternion, representing rotation from the  

   orbital to target body frame; 

Ω    the angular rate of the orbital frame with respect to the inertial  

   frame. 

Using these notations, the dynamics of the two systems can now be described as 

follows (Figure 2). The translational kinematics and dynamics of a chaser spacecraft in 

the orbit frame centered at the target vehicle are presented by Hill’s equations (Vallado 

and McClain 2007): 

 

2

2

1 (2 3 )

1 ( 2 )

1 ( )

x

y

z

x y x f
m

y x f
m

z z f
m

= Ω + Ω +

= − Ω +

= −Ω +

�� �

�� �

��

 (1) 

 

where xf , yf  and zf  are the applied forces (controls) expressed in Hill’s frame. 

The rotational dynamics of the chaser, described by the vector equation 

(Greenwood 1987; Wie 1988) 

 I ω ω I ω TC C C C C+ × =�  (2) 

expands into the scalar quantities: 

 

22 33

11

33 11

22

11 22

33

( )

( )

( )

C C C C C
y z xC

x C

C C C C C
x z yC

y C

C C C C C
y x zC

z C

I I T
I

I I T
I

I I T
I

ω ω
ω

ω ω
ω

ω ω
ω

− +
=

− +
=

− +
=

�

�

�

 (3) 
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In Equations (2), (3) 11 22 33([ , , ])IC C C Cdiag I I I=  is the inertia matrix along the 

principal axes, T[ , , ]ωC C C C
x y zω ω ω= , and T[ , , ]T x y zT T T=  is a vector torques (symbol T  

denotes transposition). 

Similarly, for the target (we have no control of) the rotational dynamics is given 

by the vector equation 

 I ω ω I ω 0T T T T T+ × =�  (4) 

or its scalar form 

 

33 22

11

11 33

22

22 11

33

( )

( )

( )

T T T T
y zT

x T

T T T T
T x z
y T

T T T T
y xT

z T

I I
I

I I
I

I I
I

ω ω
ω

ω ωω

ω ω
ω

−
= −

−
= −

−
= −

�

�

�

 (5) 

Defining RT
O as the rotation matrix to convert from the body frame of the target 

{T} to the orbital frame {O} and C
O R  to convert from chaser body frame {C} to the 

orbital frame {O}, we can define the angular velocity of each object ( { , }T Cα = ) with 

respect to the orbital frame expressed in the orbital frame: 

 
0
0R

O
x x

O O
y y

O
z z

α α

α α
α

α α

ω ω
ω ω
ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Ω⎣ ⎦⎣ ⎦ ⎣ ⎦

 (6) 

Rotation matrices RO
α  are constructed using components of the corresponding 

quaternion as follows (Greenwood 1987; Wie 1988): 

 

( ) ( )
( ) ( )
( ) ( )

2 2 2 2
4 1 2 3 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 4 1 2 3 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 4 1 2 3

2 2

2 2

2 2

RO

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

α α α α α α α α α α α α

α α α α α α α α α α α α

α α α α α α α

α

α α α α α

=

+ − −⎡ − +

+ − + − −

− +

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ +⎣ ⎦− − ⎥

 (7) 
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Quaternions are a parameterization for spacecraft attitude transformations based 

on the fact that the general displacement of a rigid body with one fixed point is a rotation 

about a fixed axis: the eigenaxis.  The definition of the quaternion is:  

 

1

2

3

sin( / 2)
sin( / 2)
sin( / 2)

cos( / 2)

ρ σ
ρ σ
ρ σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

q  (8) 

where σ  is the scalar value of the rotational displacement about the eigenaxis and ρ  is 

unit vector that describes the direction of the eigenaxis.  The parameters of quaternions 

are propagated according to the known relation (Greenwood 1987; Wie 1988): 

 

1 1

2 2

3 3

4 4

0
01

02
0

O O O
z y x

O O O
z x y

O O O
y x z

O O O
x y z

q q
q q
q q
q q

α α αα α

α α αα α

α α αα α

α α αα α

ω ω ω
ω ω ω

ω ω ω
ω ω ω

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥
− − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

�
�
�
�

 (9) 

Equations (1), (3), (5) and (9) define a 20-state system of differential equations governing 

rendezvous dynamics. Combined into the state vector x these states are: 

 1 2 3 4 1 2 3 4
T[ , , , , , , , , , , , , ,, , , ], , ,x C C C C T T TC C C T T T

x
T

y z x y z q q q qx y z x y q q q qz ω ω ω ω ω ω= � � �  (10) 

The governing dynamics assume six normalized controls that can be used by the 

chaser to achieve the rendezvous conditions: 

 
T

max max max max max max

, , , , ,u y yx xz z

x y z x y z

f Tf Tf T
f f f T T T

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (11) 

For simplicity, we will further assume 2
max 1 /if m s= , max 1iT Nm= , , ,i x y z= . 

These controls are three normalized components of a translational force acting on the 

chaser if , , ,i x y z= , expressed in the Hill’s coordinate frame, and three normalized 
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components of a torque allowing to change chaser’s attitude, iT , , ,i x y z= , expressed in 

the chaser’s body frame.) All six controls are bounded: 1 u 1− ≤ ≤ . 

Using these controls, we would like to bring the two spacecraft from some initial 

conditions, given by 20 initial values of states 0( )ix t , 1,..., 20i = , to docking-enabling 

conditions described by matching chaser’s and target’s docking station final positions and 

velocity vectors as described by the following equations. These conditions for positions 

and velocities, expressed in the matrix form are as follows: 

1

2

3

R R 0

T C
x x

O T O C
y y
T C
z z

T C

d d x e
d d y e
d d z e

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

                 and 

 
4

5

6

ω R ω R 0

T C
x x

O T O T O C O C
y y
T C
z z

T C

d d x e
d d y e
d d z e

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥× − × + = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

�
�
�

 (12) 

While transitioning to docking-enabling conditions, we would like to minimize and 

compare two different performance indices: 

 
0

0

ft

t

J f dt= ∫  (13) 

with 

 0 1f =  (14) 

for minimum time and 

 ( )0
2 2 2 2 2 2

51 2 3 4 6
1
2

f u u u u u u= + + + + +  (15) 

for minimum quadratic-control (or more commonly referred to as minimum energy) 

expenditure (Henshaw 2003).  An equivalent formulation to the minimum time cost can 

also be expressed as J = tf, which employs an endpoint cost (Mayer) as opposed to a 
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running cost (Lagrange).  A brief statement about the cost function (or PI) is in order.  

The specific cost function for minimum energy was chosen to include all actuators.  The 

fact is, it can contain any subset of the controls or states.  The choice for this research was 

to keep the cost function as generic as possible (including all actuator in the cost), but one 

can easily think of situations, where the cost function might be truncated to only include 

translational actuators (the case of using Control moment Gyroscopes (CMG) or Reaction 

Wheels (RW) instead of thrusters for attitude control).  The specific cost function 

implemented would depend on the details of the mission, system and the discretion of the 

user, regardless of the method applied to obtain a solution. 

B. SYNTHESIS OF THE OPTIMAL CONTROL USING MINIMUM 
PRINCIPLE 

1. Formulation of the Optimal Control Problem 

We start from the general formulation for the Hamiltonian of the system with the 

state vector x, Equation (10), controls vector u, Equation  (11), and running cost of 

Equations (13)-(15): 

0( , , ) : ( , )λ x u λ xH f= + �     (16) 

where operator (…) on the right-hand side denotes a scalar product of two vectors, and 
xλ N∈ℜ  is a costate vector which differential equations are to be defined later in this 

section. 

For the specific system of Equations (1), (3), (5) and (9), with the running cost 

from Equation (14) (minimum time problem) the Hamiltonian can be written with respect 

to the state vector x defined in Equation (10) as: 
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 (17) 
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The part of the Hamiltonian that depends on the controls, the switching function, 

for the time-minimum problem is:  

 ( )*
4 1 5 2 6 3 7 4 8 5 9 6

11 22 33

1 1 1 1( , , )λ x u C C CH u u u u u u
m I I I

λ λ λ λ λ λ= + + + + +  (18) 

As all six controls enter the switching function (Hamiltonian) linearly, the optimal 

control for all of them is the bang-bang control defined by: 

 3

3

1, when 0
 for 1,...,6

1, when 0
i

i
i

u i
λ
λ

+

+

<⎧
= =⎨− ≥⎩

 (19) 

(the possibility of a singular control, when 3( ) 0i tλ + ≡ , is considered in Chapter II.B.3). 

Likewise, developing the Hamiltonian for the minimum quadratic-control cost 

function, based on Equation (15) the part of the Hamiltonian that depends on the controls 

is: 

 
( )

( )

* 2 2 2 2 2 2
1 2 3 4 5 6

4 1 5 2 6 3 7 4 8 5 9 6
11 22 33

1( , , ) :
2

1 1 1 1

λ x u

C C C

H u u u u u u

u u u u u u
m I I I

λ λ λ λ λ λ

= + + + + +

+ + + + + +
 (20) 

Since the controls enter Hamiltonian nonlinearly, the optimal control is not the 

bang-bang control anymore. To be more specific, the resulting optimal control that 

minimizes the Hamiltonian for the minimum quadratic-control cost function Equation  

(15)  (minimum energy) is as follows: 
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⎧
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⎪
⎪
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⎪
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 (21) 

 

Now, the differential equations for costates will be the same for both optimization 

problems and are obtained via: 

 
T

λ
x
H∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

�  (22) 

The first six adjoint equations are given by: 

 2 1
1 43 mλ λ −= − Ω� , 2 0λ =� , 2 1

3 6 mλ λ −= Ω� ,     

 1
4 1 52 mλ λ λ −= − + Ω� , 1

5 2 42 mλ λ λ −= − − Ω� , 6 3λ λ= −�    (23) 

The next six adjoint equations, corresponding to the states 7 through 12, take the form of: 

 

11 33 22 11
7 8 9 9 8 13

22 33

14

16

15 14 1315 16

1
2

1 1 1
2 2 2

C C C C

C C

I I I Ix x

x

x

x x

I I
λ λ λ λ

λ λ λ

− −
= + − Ω

− Ω + Ω + Ω

�
 (24) 

The remaining eight adjoint equations, corresponding to the states 13 through 20, are of 

the form: 
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2

2x x x x x xλ− Ω − Ω + Ω
 (25) 

(The adjoint equations for 17λ� ,…, 20λ�  can be derived by swapping the associated chaser 

states and costates with the RSO variables (ex. 13 17 13 17 13 17, , , etc.x xλ λ λ λ→ → →� � )). 
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For this problem formulation, it should also be noted that the third and the sixth 

costate equations are decoupled. This feature will be addressed further.  The next step is 

to examine the transversality conditions, which with account to the following coupled 

terminal variations, followed directly from Equation (12).  The six scalar equations for 

the components of the vector 1 6[ ,..., ] 'e e e=  represent the matching of position and 

velocity of the docking points in the three components of the orbital coordinate frame at 

the time ft . If positions of the docking points are matched in the orbital frame, then 

matching velocity in the orbital frame will lead to matching velocity in the inertial frame 

as well, since the transport theorem will have the same effect for coincident points. 

Let variable E represent an endpoint cost that is set to zero for both the minimum 

time and minimum-control scenarios. Introducing an auxiliary function, E , several more 

necessary conditions for optimal control (i.e., transversality conditions) can be taken into 

account as (Yan, Fahroo and Ross 2002): 

 
6

1
i i

i
E E eυ

=

= + ∑  (26) 

 
T

λ
x f

f

t

t t

E

=

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

 (27) 

The first six equations result in expressions that only contain the parameters iυ , 

1,...,6i = : 

 1 1( )ftλ υ= − , 2 2( )ftλ υ= − , 3 3( )ftλ υ= − ,                            

4 4( )ftλ υ= − , 5 5( )ftλ υ= − , 6 6( )ftλ υ= −    (28) 

These six equations are then properly substituted into the remaining equations to give the 

14 equations for the end conditions, described as 1 14[ ,..., ]ζ ζ ζ ′= , that must be satisfied, 

along with the six docking states for position and velocity given by Equation (12) at ft , 
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and the twenty known initial conditions.  For example, for the value at tf of the 7th costate 

in relation to the first transversality condition is: 

 

( )
( )
( )
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2 2 2 2
13 15 14 16 21 16 13 14 15 23

2 2 2 2
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+ −
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Then substituting from Equation (28) leads to: 
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13 14 15 16 23 13 15 14 16 22

2 2 2 2
13 15 14 16 21 16 13 14 15 23

2 2 2 2
16 13 14 1

1
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t t t

t

t

ζ λ λ

λ

λ

+ −

− + − − −

= − − −

+ −

++ −+ − − =−

. (30) 

The same is done for the remaining 13 equations. 

Therefore, everything is in place to solve the minimum time Minimum Principle 

problem converted to the nonlinear programming, two point boundary value problem 

(TPBVP) numerically. Specifically, given the dynamics of the system described by 

Equations (1), (3), (5), (9), and adjoint system Equations (23)-(25), with the optimal 

controls synthesized as Equation  (19) or Equation (21), with the initial states 0( )ix t , 

1,..., 20i = , we guess on the values of the initial costates 0( )i tλ , 1,..., 20i =  and the 

maneuver time ft  (21 variable parameters), in attempt to zero six final discrepancies in 

matching final position and inertial velocity of chaser’s and target’s docking stations 

(Equation (12)), together with fourteen relations resulting from the transversality 

conditions (Equation(26)) and assure that (Yan et al. 2002) 

 ( ) 0fH t = . (31) 

Therefore, we have 21 varied parameters and 21 conditions to satisfy. 

2. Accounting for a Possible Path Constraint 

For the close rendezvous problem, we should obviously take into account one 

more constraint. This constraint is that the CM of the chaser spacecraft must remain at a 
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distance larger than some minimum distance (a “keep out” sphere with a radius r) from 

the CM of the RSO, which is coincident with the origin of the orbit frame. This assures 

that the chaser vehicle will not pass through the target vehicle in order to reach the 

docking position. Mathematically, this can be defined as: 

 2 2 2 2
1 2 3( ) 0h x x x r= + + − ≥  (32) 

where ix , 1,2,3i =  are the first three elements of the state vector (9). Furthermore, while 

a trajectory is on a path constraint 0h = , the tangential condition must also be satisfied 

(Pontryagin et al. 1964): 

 1 4 2 5 3 6 0dhh x x x x x x
dt

= = + + =�  (33) 

Consequently, the Hamiltonian should be augmented by another term: 

 0( , , ) : ( , )λ x u λ xH f hμ= + + ���  (34) 

where μ  is a constant and 

 
2

2

d hh
dt

=��  (35) 

(since the path constraint has to be differentiated with respect to time twice before the 

control variables appear in the expression). The value of μ  is dictated as follows: 

 
0    0 off the constraint boundary    
0    0 on the constraint boundary    

if h
if h h h

μ
μ

= > ⇒
≥ = = = ⇒� ��  (36) 

Therefore, upon first contact with the path constraint, the costate values and 

Hamiltonian will be discontinuous (Bryson and Ho 1975). 

3. Possibility of a Singular Control for a Minimum Time Problem 

Upon closer inspection, we find that in the z-direction translational control 3u  is 

decoupled from all other controls. From Equation (1) we have 
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 1 2
3 6 6 3 3,  ( )x x x m x u−= = −Ω +� �  (37) 

or 

 1 2 1
3 3 3x m x m u− −+ Ω =��  (38) 

and Equation (23) yield 

   

 1 2
3 6 6 3,  mλ λ λ λ−= Ω = −� �  (39) 

or 

 1 2
6 6 0mλ λ−+ Ω =�� . (40) 

Now, for the minimum time problem, the optimal control is defined as in Equation (19), 

hence for 3u  we will have 

 6
3

6

1, 0
1, 0

u
λ
λ

<⎧
= ⎨− >⎩

 (41) 

With account of Equation (40), we can state that 

 ( )3 3 0 6 0( ) ( ), ( )u t f t tλ λ= . (42) 

Defined by the natural frequency of Equation  (40) the control 3u  can switch from 

3max 1u =  to 3min 1u = −  or vice versa every 1mπ −Ω  seconds. Moreover, the solution 

to Equation (40) with the initial conditions defined by 6 0( )tλ  and 6 0 3 0( ) ( )t tλ λ= −�  can 

be found analytically: 

 1
6 3 0 6 0

0.5 0.5 0.5si( ) ( ) ( ) cosn( ) ( )m m tt tt mtλ λ λ−− −+Ω Ω Ω−= . (43) 

The roots of this equation are defined as 
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 1 0.5

3

5 1.6

0

00( )tan
( )

mtt
t

mλ
λ

− −−⎛ ⎞
= Ω Ω⎜ ⎟

⎝ ⎠
. (44) 

From the other hand, the extremals of Equation (43) are achieved at 

 1 1 13 0.5 0.50

6 0

( )* tan
( )

mtt
t

mλ
λ

− − −⎛ ⎞
= − Ω Ω⎜ ⎟

⎝ ⎠
. (45) 

As seen from Equations (43)–(45), the only possibility for the singular control would be 

when 

 3 0 6 0( ) 0 and ( ) 0t tλ λ= = . (46) 

In this case, 6 0( )tλ =  and the optimal control cannot be defined from Equation (41), but 

requires more rigorous analysis (Bryson and Ho 1975). 

C. METHODOLOGY FOR OBTAINING A SOLUTION AND CHECKING 
THE OPTIMALITY 

This section presents the methodology for obtaining and verifying optimal 

solutions for two problems posted in Chapter II.A. Despite the fact that the structure of an 

optimal control was defined analytically (in the previous section), it is clear that there is 

no way one could solve this problem using direct shooting approach having some 

arbitrary values of varied parameters. No matter what optimization algorithm to solve the 

TPBVP would be used, the numerical solution will diverge. That is where direct methods 

of calculus of variations become useful. In what follows, this section introduces a specific 

rendezvous scenario with the concrete specific numerical values to play with. Next, it 

describes a procedure of obtaining quasi-optimal numerical solutions for each of two 

optimization problems using direct collocation methods, also known as pseudospectral 

methods. Finally, a methodology of using this solution, which is very close to the true 

optimal one, to address the problem using direct shooting method for the TPBVP 

formulated in Chapter II.B.1 is introduced. 
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1. Defining a Rendezvous Scenario 

This specific scenario to play with initializes the chaser CM starting at a distance 

of 5 meters from the target CM with the target having an initial angular velocity of 0.25 

rad/s in both y and z body axes without losing generality. The body coordinate frames of 

each spacecraft and the orbit frame are assumed to be coincident with the inertial frame at 

the beginning of the simulation.  The chaser docking point is located at [-0.25, 0, 0]T in 

the body frame while the target docking point is located [1, 0, 0] T in the target body 

frame. The initial values of mentioned and the remaining states for computer simulations 

discussed in the following sections are presented in Table 1. The scenario also assumes 

1m kg= , 0.005 rad/sΩ = , 3 3I I IC T
×= =  (where 3 3I ×  is the identity matrix), r2 =1.5m and 

the maximum bound on the final time of 10 seconds.  The choice of an Ω  value was 

made arbitrarily. 

State 
Initial 

condition 
(m and m/s) 

State 
Initial 

condition 
(rad/s) 

State
Initial 

condition 
(quaternion) 

State 
Initial 

condition 
(quaternion) 

x1 0 x7 0 x13 0 x17 0 
x2 5 x8 0 x14 0 x18 0 
x3 0 x9 0 x15 0 x19 0 
x4 0 x10 0 x16 1 x20 1 
x5 0 x11 0.25     
x6 0 x12 0.25     

Table 1.   The initial values of the states 

2. Solving the Problem with the Gauss Pseudospectral Optimization 
Solver (GPOPS) 

The optimal control problems posted in Section A were first solved using the 

Gauss Pseudospectral Optimization Solver (GPOPS) (Rao et al. 2009).  The GPOPS is an 

open source code that implements the Gauss Pseudospectral Method for solving optimal 

control problems. As many as 150 internal nodes were chosen for the solution.  Usually, 

to speed up the numerical procedure, not more than about 60 nodes are being used 

(Yakimenko, Xu and Basset 2008).  The initial conditions were chosen based on Table 1 

and the final conditions were based on matching position and velocity of the terminal 

point.  
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3. Verification of the GPOPS Solution with Minimum Principle 

Differential equations for the states (Equations (1), (3), (5), (9)) and costates 

(Equations (22)–(25)), developed in the previous sections, were programmed into the 

Mathworks’ Simulink blocks as shown in Figure 4. 

 

Figure 4.   Simulink model for integrating the states and costates using the optimal 
switching function for controls. 

The Optimal Control Law block (on the left in Figure 4), implements the control 

based on the switching conditions Equation  (19) or Equation  (21) developed in Chapter 

II.B.1.  The upper and middle blocks integrate the states and costates, respectively, while 

block on the bottom calculates the Hamiltonian. The initial conditions for the 20 states 

are taken from Table 1, while the 20 initial conditions for costates along with the final 

time ft  are guessed on. 

The far right block calculates the terminal conditions, e  and ζ . The outputs are 

sent to a cost function β  constructed as follows:  

 2( ) ( ) ( )e ζf f ft t H tβ = + +  (47) 



 30

The MATLAB unconstrained optimization function fminunc (exploiting Quasi-Newton 

method) was used to solve for the TPBVP in the following form: 

X=fminunc(@cost_function,x0,options,lambda,time). 

This function attempts to find a minimum of a scalar function of several variables, 

cost_function, starting at an initial estimate x0. Here, cost_function calls the 

Simulink model (Figure 4) passes the vector of initial guesses 

 T
1 0 20 0[ ( ),..., ( ), ]X ft t tλ λ=  (48) 

and computes the cost function β . The options parameter of fminunc is varied 

based on the fidelity of solution required. By default, the termination tolerance the 

function value and on vector of varied parameters is set to 10-6. 

For the case of path constraints placed on the state variables as in Equation (31), 

20 additional parameters are needed to define the costates values at the time, dt , where 

they become discontinuous (Bryson and Ho 1975).  For this case, a reset is included 

along with the integrator that will reset the costates to these new parameters if the path 

constraint is contacted. In this case, the X value is augmented to include initial guesses of 

the costate values for the time dt  (Bryson and Ho 1975) and is 

 T
1 0 20 0 1 20[ ( ),..., ( ), ( ),..., ( ), ]X d d ft t t t tλ λ λ λ=  (49) 

The vector X is only augmented with enough costate reset values as suspected 

path constraint contact points deduced from the GPOPS solution.  For example, the 

GPOPS solution suggests only one contact with the path constraint, therefore, we only 

augment the X vector with one set of ( )dtλ  values. 

To implement the state path constraint of the form ( ) 0xh ≥ , where h does not 

depend on u, a penalty function Ρ , was associated with the violation of the constraint that 

took the form of: 
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 1 4 2 5 3 62 2 2 , 0
 = 

0, 0
x x x x x x h

h
ρ

+ + ≤⎧
⎨ >⎩

 (50) 

with 

 
0

ft

t

P dtρ= ∫  (51) 

and 

 2( ) ( ) ( )    .f f fe t t H t Pβ ζ= + + +  (52) 

instead of Equation (47). This increases the cost function if the vehicle is on the 

constraint boundary and not meeting the tangency conditions stated in Chapter II.B.2. 

Otherwise, if the vehicle is not on the constraint or meets the tangency conditions while 

on the constraint, there is no penalty associated with the cost. A penalty function of this 

type is  appealing because it has a smooth transition from solutions where constraints are 

not violated to solutions where they are violated. Note, that if the vehicle is on the 

boundary and meets the tangency conditions, it will not cross the boundary. 

D. OBTAINING AND ANALYZING MINIMUM QUADRATIC-CONTROL 
(MINIMUM ENERGY) SOLUTION 

The results of the GPOPS solution and then their verification with the Minimum 

Principle solution are obtained as discussed in the previous section.  

1. Minimum Energy Solution with GPOPS 

For the minimum energy rendezvous scenario set in Chapter II.A, the GPOPS 

optimization package yielded the solution shown in Figure 5. This solution, minimizing 

the quadratic-control cost returned a value of J = 0.1133.  Figure 6 shows the planar 

views of the solution. The overlaid sphere is centered a the target RSO and has a radius 

equal to that of the distance the docking point of the RSO is offset from its center of 

gravity. The final maneuver time is calculated to be 10 seconds, the upper bound on the 

final allowable time for this scenario (without this limit the optimal solution would yield 
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an infinite final time).  It should be noted that although position and velocities of the 

docking points coincide, the orientation of the spacecraft do not match since this 

condition was not set as a constraint.  In essence, a spacecraft can be translating at a 

different rate than the docking point because the docking point is offset from the 

spacecraft CM and rotating with respect to the orbital frame.  

 

Figure 5.   Minimum energy solution (GPOPS):  The 3D view of the optimal trajectory.  
A close-up of the final position is shown in the exploded view. 

The progression of the RSO docking point position carves out a circle in the plane 

perpendicular to the angular velocity vector of the RSO because the RSO is assumed to 

have an identity inertia matrix, an assumption that is relaxed in the next chapter. 
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Figure 6.   Minimum energy solution (GPOPS):  the planar views of the optimal 

trajectory. 

Figure 7 shows a plot of the resulting controls time histories (solid lines) as well 

as the associated costate time histories (without units) that were used to synthesize the 

optimal control based on Equation (15) (dashed lines).  Figure 8 shows the time history of 

the difference in position and velocity of the chaser and RSO docking point in the XYZ 

orbital frame, ( )e t , as defined by Equation (12).  The time history of the terminal 

conditions due to transversality, ( )ζ t , are shown in Figure 9.  Obviously, all the values in 

Figures 8 and 9 do approach zero as they are supposed to do.  Table 2 summarizes the 

results of optimization in terms of the values of varied parameters, initial value of the 

costates and Table 3 lists the terminal values of ( )e t , ( )ζ t  and ( )H t .  Since for 

numerical solutions the final value of the Hamiltonian does not tell a full story, its 

complete time history is presented in Figure 10. 
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Figure 7.   Minimum energy solution (GPOPS):  control and associated costate history. 
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Figure 8.   Minimum energy solution (GPOPS): time history of discrepancies in the 

position and velocity of the chase and RSO docking points. 
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Figure 9.   Minimum energy solution (GPOPS):  history of the transversality conditions. 

 
Costate Initial Condition Costate Initial Condition Costate Initial Condition 

λ1  0.0202713560903818 λ8  0.0235328656506421 λ15 -0.00357471284206 
λ2  0.0415555942048028 λ9 -0.058080907113755 λ16  1.060304309630e-10 
λ3  0.00694445082087804 λ10 -0.358237973748141 λ17 -0.0681335012622741 
λ4  0.0816306658067988 λ11  0.556788661928892 λ18  0.0053037488085563 
λ5  0.244702539834469 λ12  0.410549229662363 λ19  0.202974770150912 
λ6  0.0166838774111 λ13  1.41849853483e-05 λ 20 -3.422927080667e-10 

λ7 -0.004695462475917 λ14 -2.046214161772e-05 ft   10 

Table 2.   The initial values of costates and  final time as defined by GPOPS. 

endpoint Resulting Value endpoint Resulting Value endpoint Resulting Value 
e1(tf)  2.1 e-10 ζ2(tf) -9.9 e-09 ζ9(tf)  7.7 e-08 

e2(tf) -9.4 e-12 ζ3(tf) -1.6 e-09 ζ10(tf)  5.0 e-08 

e3(tf) -2.8 e-11 ζ4(tf)  1.2 e-11 ζ11(tf)  1.4 e-07 

e4(tf)  5.1 e-11 ζ5(tf) -4.5 e-09 ζ12(tf)  6.5 e-08 

e5(tf)  1.7 e-10 ζ6(tf)  2.6 e-09 ζ13(tf)  3.3 e-07 

e6(tf)  1.4 e-10 ζ7(tf)  6.4 e-07 ζ14(tf) -5.8 e-07 

ζ1(tf)  3.8 e-07 ζ8(tf) -6.4 e-09 H(tf) -0.009711 

Table 3.   Value of terminal and transversality conditions at the final time. 
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Figure 10.   Minimum energy solution (GPOPS): history of the Hamiltonian. 

It should be noted that the achieved terminal tolerance of the order of 10-7-10-11 

does not necessarily tell about the quality of the solution.  The reason for this is that the 

parameters of the trajectory are only being computed (optimality conditions enforced) at 

150 nodes. Another important issue worth mentioning here is that it took 11,869.27 

seconds (a little over 3 hours) to produce this 150-node solution of a 10s-long trajectory 

on a 2.33GHz Dell Precision M90 desktop computer with an Intel T7600 processor and 

1Gb of RAM. The initial guess for the solution (required as an input to GPOPS) consisted 

of two terminal points, one at the initial time and one at the final time.  The guess for the 

initial states corresponded to the initial conditions, while the guess for the final states 

consisted of zeros for the first 12 states, and the value of [0,0,0,1] T for the states 

corresponding to the quaternions. The guess for the control history was 0 at initial and 

final time for all controls.  Less accurate solution, with the lower number of nodes, would 

obviously require less computational resources (Yakimenko, Xu and Basset 2008).  For 

instance, a 25-node solution, for this case, only required 219.43 seconds (less than 4 

minutes) on the same computer. The point is that the solution seems to be feasible and 

realizable in practice (look at the smooth controls in Figure 7) but can only be used for 

off-line computations, i.e., in the open-loop guidance schemes. The jump in Hamiltonian 

value in Figure 10 and other Hamiltonian histories to follow occurs when path constraint 

from Equation  (32) is enforced as in Equation (36). 

The next section addresses validation of the GPOPS solution, showing that it is 

indeed optimal. 
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2. Verification of the GPOPS Solution with Minimum Principle 

As discussed in Chapter II.C.3, the initial guesses provided by the GPOPS 

solution (Table 2) were used to run an optimization procedure exploiting the optimal 

controls synthesized using the Minimum Principle. The Quasi-Newton method based 

optimization routine employing forward shooting and integration of equations of motion 

using Bogacki-Shampine ordinary differential equation 3 (ODE3) solver with a fixed step 

of 10-3. This approach results in a solution that has as many as 10,000 points (as opposed 

to just 150 nodes as in GPOPS). Of course it comes with the cost. Even with the perfect 

initial guesses for all varied parameters it takes many hours for the optimization process 

to converge (compared to several minutes with no good initial guess for GPOPS). The 

MP solution, returned a value of the PI J=0.11341185 (compare to J = 0.1133 for the 

GPOPS solution), cost function β =0.001768, and P = 1.646 e-06. 

As expected, solving the same problem, as in Chapter II.D.1, (a quadratic-control 

case with path constraints) produces the results, the optimal trajectory, controls and time 

histories of all parameters, which are pretty close to those produced by GPOPS.  The 

control time histories and those states and costates that were not shown for the GPOCS 

solution are shown. Specifically, Figure 11 shows the controls time histories, 

discontinuous at running into a path constraint at 9.642dt s= , Figures 12–14 show the 

states and corresponding costates of the chaser and target RSO. The values of the initial 

costates as suggested by MP are shown in Table 4, and the terminal values ( )e ft , ( )ζ ft  

and ( )fH t  are shown in Table 5.  Figure 15 presents the time history of the Hamiltonian. 
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Figure 11.   Minimum energy solution (MP): Control time histories and associated costates. 
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Figure 12.   Minimum energy solution (MP): state and costate time-histories for 

translational variables of the chaser vehicle. 
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Figure 13.   Minimum energy solution (MP):  state and costate histories for the defining 

angular parameters of the chaser vehicle. 
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Figure 14.   Minimum energy solution (MP): state and costate time histories for the RSO. 
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Costate Initial Condition Costate Initial Condition Costate Initial Condition 

λ1  0.0202713560903818 λ8  0.0235328656506421 λ15 -0.00357471284206 
λ2  0.0415555942048028 λ9 -0.058080907113755 λ16  1.060304309630e-10 
λ3  0.00694445082087804 λ10 -0.358237973748141 λ17 -0.0681335012622741 
λ4  0.0816306658067988 λ11  0.556788661928892 λ18  0.0053037488085563 
λ5  0.244702539834469 λ12  0.410549229662363 λ19  0.202974770150912 
λ6  0.0166838774111 λ13  1.41849853483e-05 λ 20 -3.422927080667e-10 

λ7 -0.004695462475917 λ14 -2.046214161772e-05 ft   10 

Table 4.   The initial values of costates and tf as defined by MP. 

Costate Resulting Value Costate Resulting Value Costate Resulting Value 
e1(tf)  0.0001 ζ2(tf)  0.0001 ζ9(tf)  0.0001 

e2(tf) -0.0001 ζ3(tf) -0.0001 ζ10(tf) -0.0001 

e3(tf) -0.0006 ζ4(tf) -0.0006 ζ11(tf) -0.0006 

e4(tf) -0.0033 ζ5(tf) -0.0033 ζ12(tf) -0.0033 

e5(tf)  0.0012 ζ6(tf)  0.0012 ζ13(tf)  0.0012 

e6(tf)  0.0013 ζ7(tf)  0.0013 ζ14(tf)  0.0013 

ζ1(tf) -0.0001 ζ8(tf) -0.0001 H(tf) -0.0291 

Table 5.   The value of terminal and transversality conditions at the final time. 
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Figure 15.   Hamiltonian for the forward shooting minimum-control solution. 

Note, some of the numbers in Table 4 appear in the bold font. These, are the only 

numbers that are different from the GPOPS solution (Table 4). Therefore, it took hours 

and hours to correct initial values for just a few costates, primarily four of them, λ13, λ14, 

λ16, and λ20. Obviously, it is due to the fact that because if integration the solution is quite 

sensitive to the initial values of varied parameters. Also, the accuracy of GPOPS solution 
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(Table 3) cannot possibly be matched. However, the point of the entire exercise was to 

prove that GPOPS does provide a solution that is very close to the truly optimal one, and 

it was proven. 

E. OBTAINING AND ANALYZING THE MINIMUM TIME SOLUTION 

1. Minimum Time Solution with GPOPS 

The 3D trajectory and 2D projections of the trajectories as a result of the GPOPS 

solution are shown in Figures 16 and 17, respectively. As seen, they are quite different 

from those shown in Figures 5 and 6.  Also notice that, although the positions and 

velocities of the angular velocities match, the vehicle orientations do not.  The resulting 

control history is shown in Figure 18. The zf  control (of the translational motion in the z 

direction) turns out to be highly oscillating. The endpoint conditions, taken from the state 

constraints on the endpoint as well as the transversality conditions are shown in Figure 19 

and 20. The values of the initial costates as suggested by GPOPS are shown in Table 6 

and the terminal conditions of the boundary equations are shown in Table 7. The time 

history for the Hamiltonian is presented in Figure 21. 
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Figure 16.   Minimum time solution (GPOPS):  The 3D view of the optimal trajectory.  A 
close-up of the final position is shown in the exploded view. 
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Figure 17.   Minimum time solution (GPOPS): the 2D plots of optimal rendezvous 

trajectory. 

 

 
Figure 18.   Minimum time solution (GPOPS):  the control and associated costate history. 
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Figure 19.   Minimum time solution (GPOPS):   time history of discrepancies in the 

position and velocity of the chaser and RSO docking point. 
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Figure 20.   Minimum time solution (GPOPS): history of transversality conditions.  
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λι Initial Condition λι Initial Condition λι Initial Condition 
λ1  0.000834092040702561 λ8 -0.00781391345181247 λ15 -0.0670307214682799 

λ2  0.418560914087817 λ9 -0.00529954719645793 λ16 -2.47014407229089 

λ3  7.46232139969827e-08 λ10 -0.0966015054618492 λ17 -0.365359323439127 

λ4 -0.00634589252204042 λ11  0.017598938378927 λ18 0.0400467496481145 

λ5  0.901334242652277 λ12 -0.719562963054045 λ19 -0.562241844247041 

λ6  1.04649495108653e-07 λ13 -0.0420682846405162 λ20 -1.6978671241818 

λ7 -0.0133948065189441 λ14 -0.0394802339637517 ft   3.4237 

Table 6.   The initial values of costates and as defined by GPOPS. 

endpoints Resulting Value endpoints Resulting Value endpoints Resulting Value 
e1(tf) -3.1 e-08 ζ2(tf)  3.3 e-07 ζ9(tf) -1.9 e-06 

e2(tf) -3.8 e-08 ζ3(tf) -6.9 e-08 ζ10(tf)  3.8 e-06 

e3(tf)  4.9 e-08 ζ4(tf) -5.2 e-14 ζ11(tf)  3.2 e-07 

e4(tf) -1.8 e-07 ζ5(tf)  1.0 e-07 ζ12(tf) -5.1 e-07 

e5(tf)  5.1 e-07 ζ6(tf)  1.0 e-07 ζ13(tf) -2.0 e-07 

e6(tf) -1.7 e-08 ζ7(tf) -3.5 e-07 ζ14(tf)  1.1 e-07 

ζ1(tf) -3.3 e-10 ζ8(tf)  9.7 e-06 H(tf) -0.2801 

Table 7.   Value of terminal conditions at the final time as calculated by GPOPS. 

 
Figure 21.   Minimum time solution (GPOPS): history of the Hamiltonian. 

Closer inspection of the GPOPS solution for λ6 in Figure 18 (it jumps back and 

forth? around zero value) suggests a presence of a singular control.  This is indirectly 

confirmed by oscillations of the Hamiltonian as well (Yakimenko, Xu and Basset 2008).  

Hence, the zf  control is not optimal and infeasible. 

With 150 nodes, the computational time to arrive at the solution shown above 

(3.4237 second maneuver) was 8,929.55 seconds (~2.5 hours).  The initial guess for the 

solution was the same as the one used for the minimum energy case.  For comparison, 

with 25 nodes the required computational time can be brought down to 100.77 seconds 
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(<2 min).  However, as seen from Figure 22, the controls in this case are even less 

optimal than in Figure 18, and of course the Hamiltonian (Figure 23) looks worse than 

that of Figure 21. 

 
Figure 22.     Minimum time solution (GPOPS):  The associated costate history resulting 

from a 25 node solution. 

 
Figure 23.   Minimum time solution (GPOPS):  Hamiltonian for the associated 25-node 

solution. 

2. Verification of the GPOPS Solution with Minimum Principle 

The minimum time rendezvous problem is approached in a similar fashion of the 

minimum-control one. First, the problem is investigated using a β  based on Equation 

(52). A major difference that arises compared to the minimum-control solution is the 

existence of a singular control in u3, which controls acceleration in the z orbital direction.   
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As discussed in Chapter II.B.3, a singular control exists and needs special consideration 

for numerical implementation. The optimal control structure was assumed to have the 

following form: 

 

1

1 2

2 3

3 43

4 5

5 6

6

1, 0
0,
1,
0,
1,

0,
1, f

t t
t t t
t t t
t t tu
t t t
t t t
t t t

− ≤ <⎧
⎪ ≤ <⎪
⎪ ≤ <
⎪ ≤ <= ⎨
⎪− ≤ <
⎪

≤ <⎪
⎪ ≤ <⎩

 (53) 

Accordingly, the vector of varied parameters X was augmented with the switching 

times 1 6,...,t t : 

 1 20 1 20 1 6[ ( ),..., ( ), ( ),..., ( ), ,..., , ] 'X f f d d ft t t t t t tλ λ λ λ= . (54) 

Having instances 1 6,...,t t  as varied parameters implied that the search was made 

among multiple control profiles including traditional bang-bang control, like 3min 3maxu u−  

(when 1 2t t=  and i ft t= , 3,..., 6i = ), or 3max 3minu u−  (when 1 2 0t t= = , 3 4t t=  and 

5 6 ft t t= = , 3,..., 6i = ) allows calculation of a control history even in the presence of a 

singular arc. 

The resulting trajectory is shown in Figures 24 and 25. The corresponding optimal 

controls profiles are presented in Figure 26. As seen, it was 3min 3max 3min0u u u− − −  profile 

that was found to be optimal for the 3u  control (i.e., 5 6 ft t t= = ). The time histories for 

the remaining controls, 1 2 4 5 6, , , ,u u u u u , match those for the GPOPS solution (Figure 15). 

Figures 27-29 show the state costates time histories for the chaser and target RSO, 

respectively. The values of the initial costates as suggested by MP are shown in Table 8  
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and the error in satisfying boundary conditions are shown in Table 9 (the cost β = 0.002, 

P=0.00124 Figure 30 presents the Hamiltonian (compare it with that of Figure 21 and 

22). 

 

 
 

Figure 24.   Minimum time solution (MP): 3D optimal rendezvous trajectory. 
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Figure 25.   Minimum time solution (MP): The 2D projections of the optimal rendezvous 

trajectory. 

 

 
Figure 26.   Minimum time solution (MP): control histories and associated switching 

conditions. 
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Figure 27.   Minimum time solution (MP):  State and costate histories for the translational 

variables of the chaser vehicle. 
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Figure 28.   Minimum time solution (MP):  state and costate histories for the defining 

angular parameters of the chaser vehicle. 
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Figure 29.   Minimum time solution (MP): state and costate time histories for the RSO. 

 
 λι Initial Condition λι Initial Condition λι Initial Condition 
λ1 0.000813270815835508 λ8 -0.0079043944784984 λ15 -0.067030975848676 
λ2  0.41856021740054 λ9 -0.0052514744594656 λ16 -2.47013927846309 
λ3  0 λ10 -0.0966015055875181 λ17 -0.365359450504476 
λ4 -0.00632550328119496 λ11  0.017598938703864 λ18  0.0400468901069352 
λ5  0.90134410424794 λ12 -0.719562962786195 λ19 -0.562241768137901 
λ6  0 λ13 -0.042050296747438 λ 20 -1.6978671241818 

λ7 -0.0135549835134852 λ14 -0.0395088309550527 ft   3.432 

Table 8.   The initial values of costates and tf as defined by MP. 

ei Resulting Value ei Resulting Value ei Resulting Value 
e1(tf)  0.016 ζ2(tf)  0.0028 ζ9(tf)  0.0096 

e2(tf) -0.014 ζ3(tf) -0.0018 ζ10(tf)  0.0061 

e3(tf)  0.0016 ζ4(tf)  0.00013 ζ11(tf)  0.00048 

e4(tf) -0.017 ζ5(tf) -0.00059 ζ12(tf) -0.00079 

e5(tf)  0.029 ζ6(tf) -0.00077 ζ13(tf)  0.0010 

e6(tf)  0.0080 ζ7(tf)  0.0066 ζ14(tf)  6.6 e-05 

ζ1(tf)  1.9 e-05 ζ8(tf) -0.0063 H(tf)  0.15 

Table 9.   Value of terminal and transversality conditions at the final time. 
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Figure 30.   Minimum time solution (MP): Hamiltonian for the forward shooting minimum 

time solution. 

Again, the bold numbers in Table 8 indicate the differences as compared to 

GPOPS quasi-optimal solution.  As opposed to the minimum-control case, when truly 

optimal solution happened to have almost the same values of the initial costates, in the 

minimum time case implying a singular control, the optimal solution involved more 

variations from the solution provided by GPOPS.  Of course, as in the minimum-control 

case presented in Chapter II.D.2, the indirect-method-based optimization was run 

recursively multiple times for several days in order to converge.  Nevertheless, the errors 

in satisfying the terminal conditions (Table 9) were of several orders higher than that of 

claimed by the GPOPS solution (Table 7).  The next section provides some more details 

on this issue. 

3. Propagation of the GPOPS Solution 

Once again, for the solutions provided by GPOPS, vehicles dynamics are only 

satisfied in a limited number of nodes. That is why the error in meeting all constraints is 

so negligibly small as compared to solutions provided by the methods involving 

integration of equations of motion (shooting). However, if we integrate the GPOPS 

controls, we will end up with about the same (lower) accuracy as the shooting approach. 

To illustrate it, let us, for example, take the controls for the minimum time 

solution (including a “weird” control for fz) and integrate it. The result of integrating the 

equations of motion derived in Chapters II.A and control switches in Chapter II.B with a 

fixed time step of 0.0001 seconds is shown in Figures 31 and 32 (the zero-order hold of 
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the last control inputs was used). As seen, the trajectories are practically the same as in 

Figures 16 and 17, but the endpoint discrepancies, summarized in Table 10, obviously 

grew up. The endpoint conditions of the state variables are shown in Table 10. Note, that 

the endpoint conditions of the transversality conditions are not known because the 

costates are not propagated. 
 
 

 
 

Figure 31.   Propagated trajectory using the minimum time control history from GPOPS. 
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Figure 32.   Propagated trajectory using the minimum time control history from GPOPS. 

 
 

e Resulting Value e Resulting Value e Resulting Value 
e1(tf) -0.00027 ζ2(tf) N/A ζ9(tf) N/A 
e2(tf) -9.3e-05 ζ3(tf) N/A ζ10(tf) N/A 
e3(tf) 0.00037 ζ4(tf) N/A ζ11(tf) N/A 
e4(tf) -0.00092 ζ5(tf) N/A ζ12(tf) N/A 
e5(tf) -0.00035 ζ6(tf) N/A ζ13(tf) N/A 
e6(tf) 0.00026 ζ7(tf) N/A ζ14(tf) N/A 
ζ1(tf) N/A ζ8(tf) N/A H(tf) N/A 

Table 10.   Value of terminal conditions at the final time. 
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III. OPTIMIZATION OF A SPACECRAFT MANEUVER FOR 
CLOSE APPROACH AND DOCKING WITH A TUMBLING 

OBJECT 

This chapter takes the study further by considering translational actuators fixed in 

the chaser spacecraft body frame (better representing an actual system), adding the 

requirement to match attitude and angular velocity of the chaser and RSO in preparation 

for a docking procedure (along with the requirement of matching position and velocity of 

chaser and RSO docking points), and considering one more PI (minimum fuel). The 

optimal control problem posed in Chapter II is, therefore, reformulated to take into 

consideration the effects on dynamics and the extra constraints. 

A. RENDEZVOUS MODELING AND OPTIMIZATION PROBLEM 
FORMULATION 

Using these controls, we would like to bring the two spacecraft from some initial 

conditions, given by 20 initial values of states 0( )ix t , 1,..., 20i = , to a docking-enabling 

condition described by matching the chaser’s and RSO’s docking station final positions 

and velocity vectors as well as matching the orientation and angular velocity of the two 

vehicles. Defining T
O R as the rotation matrix to convert from the body frame of the target 

to the orbital frame, we can express the desired terminal conditions. These conditions of 

matching spacecraft docking positions and velocities, in the matrix form, are identical to 

the conditions shown in Equation (12).  Matching orientation and angular rates leads to 

seven more boundary equations at tf: 

 

1 1

2 2

3 3

4 4

7

8

9

10

T C

T C

T C

T C

e
e

q q
q q

eq q
q q e

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (55) 

and 
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11
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13

1 1

2 2

3 3

T C

T C

T C

e
e
e

ω ω
ω ω
ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (56) 

If Equations (55) and (56) are satisfied, that would provide: R RC
O

T
O=  and O Oω ωC T= . 

Therefore, the conditions in Equation (12) can be rewritten as: 

  

 
1 1
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3 3

1

2

3

R

T C

O T C

T C
T

d d x e
d d y e
d d z e
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 (57) 

and 
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 (58) 

The resulting complete set of desired final conditions are T
1 13[ ( ), , ( )] 0f fe t e t =… . 

For optimal control problem in this chapter, three different performance indices 

each of the (Mayer) form 

 
0

0

ft

t

J f dt= ∫  (59) 

with the running cost 

 

 0 1f =  (60) 

for minimum time, 
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 ( )2 2 2 2 2 2
0 1 2 3 4 5 6

1
2

f u u u u u u= + + + + +  (61) 

for minimum quadratic-control expenditure (i.e., minimum energy), and 

 ( )0 1 2 3 4 5 6f u u u u u u= + + + + +  (62) 

for minimum-control are considered. Each case has a maximum finite value chosen for 

the final time ft  but is still considered a free (varied) parameter. The next step is to 

convert this optimal control problem to a TPBVP using MP (Pontryagin et al. 1964; 

Bryson and Ho 1975) 

B. MINIMUM PRINCIPLE FORMULATION  

This section deals with the MP formulation and synthesis of the optimal control. 

Using the same state vector of the complete system as shown in Equation (10), (the 

differential equations for parameters of chaser and target quaternions are standard and 

can be found in Chapter II), and the control vector shown in Equation (11), we write 

down the Hamiltonian: 

  0( , , ) : ( , )λ x u λ xH f hμ= + +�     (63) 

where operator (…) on the right-hand side denotes a scalar product of two vectors, and 
N∈ℜ xλ  is a costate vector where its differential equations are to be defined later in this 

section. The value of μ  is a constant and is dictated by the same constraint as in Equation 

(36) when considering path constraints. 

Again, as in Chapter II.B.2, this constraint is that the CM of the chaser spacecraft 

must remain at a distance larger than some minimum distance (a “keep out” sphere with a 

radius r) from the CM of the RSO, which is coincident with the origin of the orbit frame. 

This assures that the chaser vehicle will not pass through the target vehicle in order to 

reach the docking position shown mathematically in Equation (32). 

The entire Hamiltonian is expressed, with respect to the state vector x defined by 

Equation (10), in Equation (64). 
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For the minimum time cost problem defined by Equation (60), the part of the 

Hamiltonian that depends on the controls, the switching function, turns out to be: 

 ( )*
4 5 6 7 4 8 5 9 6

11 22 33

1 1 1 1( , , )λ x u x y z C C CH f f f u u u
m I I I

λ λ λ λ λ λ= + + + + +  (65) 

where 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

C2 C2 C2 C2 C C C C C C C C
4 1 2 3 1 1 2 3 4 2 1 3 2 4 3

C C C C C2 C2 C2 C2 C C C C
1 2 3 4 1 4 1 2 3 2 2 3 1 4 3

C C C C C C C C C2 C2 C2 C2
1 3 2 4 1 2 3 1 4 2 4 1 2 3 3

2 2

2 2

2 2

x

y

z

q q q q u q q q q u q q q q u

q q q q u q q q q u q q q

f

f q u
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=

=

. (66) 

This results in Equation (65) written as: 

 ( )*
1 1 2 2 3 3 7 4 8 5 9 6

11 22 33

1 1 1 1( , , ) switch switch switch C C CH u u u u u u
m I I I

λ λ λ= + + + + +λ x u  (67) 

where the switching functions that defined the control above are given by the relations: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

C2 C2 C2 C2 C C C C C C C C
4 1 2 3 1 2 3 4 1 3 2 4

C C C C C2 C2 C2 C2 C C C C
1 2 3 4 4 1 2 3 2 3 1 4

C C C C C C C C C2 C2 C2 C2
1 3 2 4 2 3 1 4 4 1 2 3

1 4 5 6

2 4 5 6

3 4 5 6

switch

switch

switch

2 2

2 2

2 2

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

λ λ λ

λ λ λ

λ λ λ

+ − − + + + −

− + − + − + +

+ + − + − − +

=

=

=

. (68) 

Assuming there are no singular arcs, since all six controls enter the switching 

function (Hamiltonian) linearly, the optimal control that minimizes the Hamiltonian in 

the case of minimum time is the bang-bang control defined by: 

 

31 2
1 2 3

31 2

7 8 9
4 5 6

7 8 9

1, switch 01, switch 0 1, switch 0
1, switch 01, switch 0 1, switch 0

1, 0 1, 0 1, 0
1, 0 1, 0 1, 0

u u u

u u u
λ λ λ
λ λ λ

<< < ⎧⎧ ⎧
= = =⎨ ⎨ ⎨− ≥− ≥ − ≥⎩ ⎩ ⎩

< < <⎧ ⎧ ⎧
= = =⎨ ⎨ ⎨− ≥ − ≥ − ≥⎩ ⎩ ⎩

. (69) 

Likewise, developing the Hamiltonian for the minimum quadratic-control PI based on the 

running cost (61), the switching function becomes: 
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( )

( )

* 2 2 2 2 2 2
1 2 3 4 5 6

4 1 5 2 6 3 7 4 8 5 9 6
11 22 33

1( , , )
2

1 1 1 1

λ x u

C C C

H u u u u u u

f f f u u u
m I I I

λ λ λ λ λ λ

= + + + + +

+ + + + + +
. (70) 

Taking into account Equation (66), the resulting optimal control that minimizes the 

Hamiltonian for the minimum quadratic-control (minimum energy) PI becomes: 

 

 

i

i

i

3
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3 3
C C

3
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switch1, 1
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1, 1
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i i
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jj jj

i

jj

m

u i
m m

m

I

u i j i
I I

I

λ

λ λ

λ

+

+ +

+

⎧ < −⎪
⎪
⎪= − − ≤ ≤ =⎨
⎪
⎪ − >⎪⎩
⎧

< −⎪
⎪
⎪⎪= − − ≤ ≤ = = −⎨
⎪
⎪
⎪ − >
⎪⎩

.  (71) 

For the minimum fuel case, corresponding to the running cost in Equation (62), the 

switching function can be written as: 

 
( )

( )

*
1 2 3 4 5 6

4 1 5 2 6 3 7 4 8 5 9 6
11 22 33

( , , )

1 1 1 1

λ x u

C C C

H u u u u u u

f f f u u u
m I I I

λ λ λ λ λ λ

=

+ + + + + +

+ + + + +
 (72) 

and, therefore, the optimal control structure becomes: 
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i

i

i

C
3

C C
3

C
3

1, switch
      0, switch    1, 2,3 

1, switch

1,
and 0,   4,5,6,   3

1,

i

i jj

i jj i jj

i jj

m
u m m i

m

I
u I I i j i

I

λ
λ

λ

+
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+

< −⎧
⎪= − ≤ ≤ =⎨
⎪− >⎩
⎧ < −
⎪= − ≤ ≤ = = −⎨
⎪− >⎩

. (73) 

The differential equations for costates are obtained via differentiating the Hamiltonian: 

  
T

λ
x
Hδ

δ
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

�       (74) 

which yields: 

 

2 1 2 1
1 4 2 3 6

1 1
4 1 5 5 2 4

6 3

3 ,  0,

2 ,  2

m m

m m

λ λ λ λ λ

λ λ λ λ λ λ

λ λ

− −

− −

= − Ω = = Ω

= − + Ω = − − Ω

= −

� � �
� �
�

. (75) 

The next six adjoint equations, corresponding to costates 7–12, take the form of 

Equations (76)–(81): 

11 33 22 11
7 8 9 9 8 13 14 116 5 16

22 3
15 14 13

3

1 1 1 1
2 2 2 2

C C C C

C C

I I I Ix x xx x x
I I

λ λ λ λ λ λ λ− −
= + − Ω − Ω + Ω + Ω�  (76) 

33 22 22 11
8 7 9 9 7 13 14 115 5 16

11 3
16 13 14

3

1 1 1 1
2 2 2 2

C C C C

C C

I I I Ix x xx x x
I I

λ λ λ λ λ λ λ− −
= + + Ω − Ω − Ω + Ω�  (77) 

33 22 11 33
9 7 8 8 7 13 14 114 5 16

11 2
13 16 15

2

1 1 1 1
2 2 2 2

C C C C

C C

I I I Ix x xx x x
I I

λ λ λ λ λ λ λ− −
= + − Ω + Ω − Ω + Ω�  (78) 

11 33 22 11
10 11 12 12 11 17 120 19 18 178 19 20

22 33

1 1 1 1
2 2 2 2

T T T T

T T x x x xI I I Ix x
I I

λ λ λ λ λ λ λ− −
= + − Ω − Ω + Ω + Ω�  (79) 

33 22 22 11
11 10 12 12 10 17 119 20 17 188 19 20

11 33

1 1 1 1
2 2 2 2

T T T T

T T x x x xI I I Ix x
I I

λ λ λ λ λ λ λ− −
= + + Ω − Ω − Ω + Ω�  (80) 
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33 22 11 33
12 10 11 11 10 17 118 17 20 198 19 20

11 22

1 1 1 1
2 2 2 2

T T T T

T T x x x xI I I Ix x
I I

λ λ λ λ λ λ λ− −
= + − Ω + Ω − Ω + Ω�  (81) 

The next four equations, corresponding to costates 13–16, are of the form of Equations 

(82)–(85): 
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and, the final four adjoint equations for costates 17–20, take the form of Equations (86)–

(89): 
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. (89) 

The form shown in Equations (75)–(89)  is different than presented in the previous 

chapter, again because of the body-mounted thrusters. 

The next step is to address the transversality conditions, which with account to the 

following coupled terminal variations, followed directly from Equations (55)–(58).  The 

ten scalar equations, 1 2 10, ,...,e e e , represent the matching of translational and angular 

position and velocity of the docking points in the three components of the orbital 

coordinate frame at the time ft based on Equations (57) and (58). Variable E represents an 

endpoint cost that is set to zero for both the minimum time and minimum-control  
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scenarios (Yan et al. 2002) and are equivalent to Equations (26) and (27) of Chapter II.  

The first six equations result in expressions that only contain the parameters iυ , 

1,...,6i = . 

1 1 2 2 3 3 4 4 5 5 6 6( ) ,  ( ) ,  ( ) ,  ( ) ,  ( ) ,  ( )f f f f f ft t t t t tλ υ λ υ λ υ λ υ λ υ λ υ= − = − = − = − = − = −  (90) 

Realizing the specific relationships, such as: 

 7, 7 7 10, 10 7
7 10

λ ( )  and λ ( )x ,λ x ,λ
f f

tf tf tf tf tf tf

t t

E Ef f
x x

δ δυ υ
δ δ

= = + = = −  (91) 

and combining terms, seven more conditions are developed that must be satisfied, along 

with six docking states for position and velocity given by Equations (57) and  (58) and 

the seven angular states based on Equations  (55) and (56), at ft .  These conditions are 

shown in Equation (92): 

1 7 10 7 10 14

6 ( 3) ( 3) ( 7)

7 ( 4) ( 4) ( 4)

( ) λ λ ( ) ( ) ( ) 0

( ) λ λ ( ) ( ) ( ) 0, for 7,8,9  and

( ) λ λ ( ) ( ) ( ) 0, for 

ζ x ,λ x ,λ

ζ x ,λ x ,λ

ζ x ,λ x ,λ

f tf tf tf tf tf tf f

f itf i tf i tf tf i tf tf i f

f itf i tf i tf tf i tf tf i f

t f f e t

t f f e t i

t f f e t i
+ + +

+ + +

= + + + = =

= + + + = = =

= + + + = =

#

13,...,16=

        (92) 

where ( )x , λi tf tff  is the portion of 
T

x
ft t

E

=

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 that only depends on x tf  and λ tf .  This 

results in the remaining final conditions, ζ , along with Equations (55)–(58)  that need to 

be satisfied for an optimal trajectory, T
1 7[ ( ), , ( )]ζ 0f ft tζ ζ= =… . 

Other parameters for the scenario are 1m = kg, 0.005 rad/sΩ = , IT =diag ([3,1,2]), 

3 3I 1C
×=  (where 3 31 ×  is an identity matrix) with inertia units of kg·m2 and tf set to a 

maximum of 10 seconds. This scenario initializes the chaser CM starting at a distance of 

5 m from the target CM with the target having an initial angular velocity of 0.25rad/s in 

both y and z body axis. The body coordinate frames of each spacecraft and the orbit 

frame are assumed to be coincident with the inertial frame at the beginning of the 
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simulation. The docking point of the chaser spacecraft is located at 0.25 m in the negative 

x body frame and the docking position of the target is located at 1m in the positive x body 

frame. Therefore, the orientations of the two spacecraft will be coincident at docking. The 

resulting values of the initial states for computer simulations discussed in the following 

sections are taken from Table 1 in the previous chapter. 

C. SOLVING THE PROBLEM NUMERICALLY USING A 
PSEUDOSPECTRAL METHOD 

The optimal control problem posted in Chapter III.A was again solved using 

GPOPS (Huntington and Rao 2008).  This software solves for the optimal control, state 

and costate history based on a given PI and constraints. As opposed to the 150 node 

solutions of the last chapter, 200 nodes were chosen for the solution to be consistent with 

previous research on this topic (Ma et al. 2007). 

1. Minimum Time 

The 3D trajectory and 2D projections of the trajectories are shown in Figures 33 

and 34, respectively.  In these figures, the solid line with the square markers shows the 

trajectory of the docking point aboard the target RSO, the dotted-dashed line with a 

circular marker represents the chaser spacecraft’s CM, and the line with upside-down 

triangles depicts the trajectory of the docking point aboard the chaser spacecraft. The 

overlaid sphere is centered at the target RSO’s CM and has a radius equal to that of the 

distance the docking point is offset from its CM. 

The resulting control history is shown in Figure 35. Figures 35–38 show the state 

and costate histories. Figures 39 and 40 show the final difference in endpoint conditions 

approaching zero and Figure 41 shows the time history of the transversality conditions, 

Equation (92), as they approach zero.  The Hamiltonian is shown in Figure 42. The initial 

values of the calculated costates are shown in Table 11. Some more details about this 

solution and required computer resources will also be provided in Chapter III.C.4 when 

comparing this solution with others. 
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Figure 33.   Minimum time solution (GPOPS): 3D plot of optimal rendezvous trajectory. 
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Figure 34.   Minimum time solution (GPOPS): 2D plots of optimal rendezvous trajectory. 
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Figure 35.   Minimum time solution (GPOPS): control history solution. 
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Figure 36.   Minimum time solution (GPOPS):  state and costate histories for the defining 

translational variables of the chaser vehicle. 
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Figure 37.   Minimum time solution (GPOPS): state and costate histories for the defining 

angular parameters of the chaser vehicle. 
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Figure 38.   Minimum time solution (GPOPS): state and costate histories for the defining 

angular parameters of the RSO. 
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Figure 39.   Minimum time solution (GPOPS):  time history of the translational endpoint 

discrepancies. 
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Figure 40.   Minimum time solution (GPOPS): time history of the attitude endpoint 
discrepancies. 
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Figure 41.   Minimum time solution (GPOPS):  history of transversality conditions. 
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Figure 42.   Minimum time solution (GPOPS):  history of the Hamiltonian. 
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Costate Initial Condition Costate Initial Condition Costate Initial Condition
λ1 -0.0832 λ8 -0.0300 λ15  1.4758
λ2  0.2801 λ9  0.0027 λ16  1.9302
λ3 -0.0172 λ10 -0.1521 λ17  0.7304
λ4  0.2251 λ11 -0.0245 λ18 -0.9484
λ5 -0.4795 λ12  0.5898 λ19 -2.1946
λ6  0.0426 λ13 -0.7500 λ 20 -1.5493
λ7  0.1521 λ14  1.0625 ft   3.4237

Table 11.   The initial values of costates and ft  as defined by GPOPS for minimum time solution. 

The important thing about this solution is that there is no singular control in 

variable uz as there was in the previous scenario described in Chapter II.E.1, where the 

translational controls were expressed in the orbital frame rather than in the body frame. 

However, the solution for Ty might suggest that there may be a singular arc in the 

beginning of the maneuver. It should be noted that in case of a singular control, the 

GPOPS control output may not be feasible for onboard implementation due to it highly 

oscillating nature (Boyarko, Yakimenko and Romano 2009a). 

2. Minimum Quadratic Control (Minimum Energy) 

For the minimum energy solution, Figures 43 and 44 represent the resulting 

trajectory in both three dimensions and planar view. Figure 45 shows a plot of the 

resulting control history, as well as the associated switching function that is used for 

calculation of the control based on the running cost in Equation (61).  Figures 46–48 

show the states and costates.  The discrepancies in endpoint conditions are shown to 

reach zero at tf  in Figures 49 and 50.  The transversality conditions are shown in Figure 

51 and the Hamiltonian is shown in Figure 52.  Table 12 summarizes the initial values of 

the costates that were solved for by the GPOPS solution.  The PI of the solution was J = 

0.2445. 
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Figure 43.   Minimum energy solution (GPOPS):  3D plot of optimal trajectory. 
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Figure 44.   Minimum energy solution (GPOPS):   2D plots of optimal trajectory. 
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Figure 45.   Minimum energy solution (GPOPS):  control history with respect to the 
optimal trajectory. 

0 5 10
-2

0

2

4

6

P
os

iti
on

 (m
)

 

 

x1 (x)

x2 (y)

x3 (z)

0 5 10
-1

-0.5

0

0.5

V
el

oc
ity

 (m
/s

)

Time (s)

 

 
x4 (Vx)

x5 (Vy)

x6 (Vz)

0 5 10
-0.05

0

0.05

0.1

0.15

λ 1- λ
3

 

 λ1
λ2
λ3

0 5 10
-0.4

-0.2

0

0.2

0.4

λ 4- λ
6

Time (s)
 

 
λ4
λ5
λ6

 
Figure 46.   Minimum energy solution (GPOPS):  state and costate histories for the 

translational variables of the chaser vehicle. 
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Figure 47.   Minimum energy solution (GPOPS):  state and costate histories for the defining 

angular parameters of the chaser vehicle. 
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Figure 48.   Minimum energy solution (GPOPS):  state and costate histories for the defining 

angular parameters of the RSO. 
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Figure 49.   Minimum energy solution (GPOPS): history of the translational endpoint 

discrepancies. 
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Figure 50.   Minimum energy solution (GPOPS): history of the rotational endpoint 

discrepancies. 
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Figure 51.   Minimum energy solution (GPOPS):  history of the transversality conditions. 

 

 
Figure 52.   Minimum energy solution (GPOPS):  history of the Hamiltonian. 

The solution GPOPS arrives at is feasible in that it does not violate any of the 

constraints presented in the problem formulation. Furthermore, the control history 

follows the logic that was derived from Minimum Principle stated in Equation (23). 



 78

Costate Initial Condition Costate Initial Condition Costate Initial Condition 
λ1 -0.0335 λ8  0.0225 λ15 -0.1798 
λ2  0.0602 λ9  0.1005 λ16  0.0457 
λ3 -0.0356 λ10  0.0460 λ17 -0.2236 
λ4 -0.1013 λ11 -0.1932 λ18 -0.0086 
λ5 -0.2672 λ12 -0.1462 λ19 -0.1366 
λ6 -0.0714 λ13  0.1229 λ 20 -0.3664 
λ7 -0.0460 λ14 -0.1501 ft   8.8943 

Table 12.   The initial values of costates and ft  as defined by GPOPS for minimum energy 
(quadratic-control) solution. 

3. Minimum Absolute Control (Minimum Fuel) 

To avoid using an absolute value (which is a nondifferentiable function at the 

value zero), the running cost in Equation (62) was substituted with: 

 ( )0 5 71 2 3 4 6 8 9 10 11 12f u u u u u u u u u u u u= + + + + + + + + + + +  (93) 

with the corresponding modifications in the control allocation: 

T

max max max max max max max max max max max max

, , , , , , , , , , ,u y y y yx x x xz z z z

x y y x y z x y y x y z

u T u Tu T u Tu T u T
u u u T T T u u u T T T

+ + − −+ + − −+ + − −⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
(94) 

so that now 0 u 1≤ ≤  (the superscript on the control, + or –, denotes the direction in the 

body axis). This also results in the following control relations (compare with Equation 

(21)): 
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. (95) 

Analyzing the structure of the switching function, 
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and comparing it with that of Equation (26), we can derive the optimal control strategy as  

follows: 
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             (97) 

Here, switch i , for 1, 2,3i = , are the same as in Equation (68). Hence in this case we can 

expect bang-off-bang control. 

The results are presented in Figures 53–62 and Table 13.  The value of the PI was 

computed as J = 2.4851.  In Figure 20, the controls iu , 1,...,6i = , acting in the positive 

direction along the corresponding body axis appear as positive values, and iu , 7,...,12i =  

are shown with the negative sign.  Note, that according to the optimal control structure of 

Equation (97)  the switching occur when the switches exceed a certain value, not zero as 

for example in Equation (69). For instance, for zu  the motion starts with some short 

control input in the negative direction, corresponding to 9u − , and ends with some short 

control input in the positive direction, corresponding to 3u +  (during the remaining time the 

control zu  is zero).  Also, the body mounted translational actuator, ux, shows rapidly 

oscillating control values near the end of the maneuver, which is a property of a singular 

arc.  The resulting rapidly oscillating control in that region would make the solution 

incredibly difficult to implement. 
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Figure 53.   Minimum fuel solution (GPOPS):  3D plot of optimal rendezvous trajectory. 
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Figure 54.   Minimum fuel solution (GPOPS):  2D plots of optimal rendezvous trajectory. 
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Figure 55.   Minimum fuel solution (GPOPS):  control history with respect to the optimal 
trajectory. 
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Figure 56.   Minimum fuel solution (GPOPS):  state and costate histories for the 

translational variables of the chaser vehicle. 
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Figure 57.   Minimum fuel solution (GPOPS):  state and costate histories for the defining 
angular parameters of the chaser vehicle. 
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Figure 58.   Minimum fuel solution (GPOPS):  state and costate histories for the RSO. 
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Figure 59.   Minimum fuel solution (GPOPS):  history of the translational endpoint 

discrepancies. 
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Figure 60.   Minimum fuel solution (GPOPS):  history of the rotational endpoint 

discrepancies. 
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Figure 61.   Minimum fuel solution (GPOPS):  history of the transversality conditions. 

 

 

Figure 62.   Minimum fuel solution (GPOPS):  history of the Hamiltonian. 
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Costate Initial Condition Costate Initial Condition Costate Initial Condition 
λ1 -0.2725 λ8 -1.0009 λ15  1.6243 
λ2  0.4399 λ9  1.0180 λ16  0.9074 
λ3 -0.1960 λ10  0.7419 λ17  1.1494 
λ4  0.1341 λ11 -0.3327 λ18 -3.2616 
λ5 -1.3660 λ12 -0.1168 λ19 -4.2237 
λ6 -0.8983 λ13 -1.5419 λ 20 -2.4355 
λ7 -0.7419 λ14  2.6216 ft   8.1182 

Table 13.   The initial values of costates and ft  as defined by GPOPS for minimum fuel solution. 

4. Solution Comparisons and Propagation 

a. Solution and Comparison 

Table 14 summarizes the results for each 200-node solution presented in 

Chapter III.C. Obviously, the scenario with the minimum time PI uses the most fuel to 

complete the maneuver. The minimum energy solution has an order of magnitude lower 

cost, as it spreads the control over the entire maneuver. It also exhibits a smoothest 

controls time histories, but maneuver takes the longest to complete. The minimum fuel 

solution results in about the same duration of the maneuver as the minimum energy 

solution, but uses about 30% less fuel. As opposed to minimum energy, it exhibits a 

bang-off-bang control structure that was expected with this type of the running cost. 
 

 Minimum time Minimum-Quad- 
Control 

Minimum fuel 

Time of the maneuver 3.5086 8.8943 8.1182 
Energy expenditure 10.4471 0.2445 1.1587 

Fuel expenditure 20.9419 3.6941 2.4863 
Computation time* (sec) 33,370 86,040 84,261 

Table 14.   Comparison of solutions for the three optimal control problems. 

Table 14 also presents the computational time it took to converge to a 

solution from the very same initial guess.  All computations were performed on a 

2.33GHz Dell Precision M90 desktop computer with an Intel T7600 processor and 1Gb 

of RAM. As compared to the results discussed in Chapter II (Boyarko et al. 2009a), the 

required central processing unit (CPU) time is about three times longer. This is due to the 

fact that 200 nodes were used in the simulation as compared to 150 nodes to that of 
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Chapter II. As explained by Yakimenko (Yakimenko, Xu and Basset 2008), the required 

CPU time can be drastically decreased by decreasing the number of nodes, but apparently 

the lesser-node solution would probably not catch short impulses of Figure 47. 

The ultimate goal is to allow trajectory generation to be carried in real 

time onboard spacecraft. At this point, this cannot be realized using either pseudospectral 

methods (Yakimenko et al. 2008). 

b. Propagating the Solution 

The goal of this section is to check the feasibility of using the optimal 

solution in order to control the system in feed-forward mode.  Consider the very first 

case, when the minimum time solution was obtained. Now that we have the controls, let 

us integrate the equation of motion derived in Chapter III.A with a time step of 0.0001 

seconds and use the calculated controls as an input. The resulting trajectory is shown in 

Figures 63 and 64. The time history of the differences in chaser and RSO docking 

position, velocity, angular position and angular rate are shown in Figure 65. Table 15 lists 

the resulting state variable deviations from the desired endpoints stated in Equations (55)-

(58) at the final time. 

The propagated trajectory appears to be very close to that of Figures 32 

and 32, i.e., propagation of the dynamics using the minimal time control output from 

GPOPS results in a feasible trajectory that is similar to the resulting trajectory generated 

by GPOPS. This means that if the solution could be obtained in real time, with a perfect 

model of the real system, it can be passed to the control system by feed-forwarding the 

controls time histories. 
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Figure 63.   Propagated trajectory using the minimum time control history from GPOPS. 
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Figure 64.   Propagated trajectory using the minimum time control history. 
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Figure 65.   Endpoint conditions on chaser and RSO docking position, velocity, angular 
position and angular rate. 

 
 
 

e Resulting Value e Resulting Value e Resulting Value 
e1(tf) -0.0003 e8(tf) 0.0001 ζ2(tf) N/A 
e2(tf) -0.0021 e9(tf) -0.0001 ζ3(tf) N/A 
e3(tf) -0.0007 e10(tf) 0.0005 ζ4(tf) N/A 
e4(tf) -0.0003 e11(tf) 0.0004 ζ5(tf) N/A 
e5(tf) 0.0015 e12(tf) -0.0002 ζ6(tf) N/A 
e6(tf) -0.0014 e13(tf) -0.0000 ζ7(tf) N/A 
e7(tf) -0.0001 ζ1(tf) N/A H(tf) N/A 

Table 15.   Value of terminal conditions at the final time. 
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IV. TIME-OPTIMAL REORIENTATION OF A SPACECRAFT 
USING A DIRECT OPTIMIZATION METHOD BASED ON 

QUATERNION REPRESENTATION OF THE INVERSE 
DYNAMICS 

This chapter of the manuscript focuses on using the equations of motion to define 

the controls for a given attitude trajectory.  This is the first step in defining the necessary 

equations and relations for the IDVD method for a close approach that would enable 

inspection or docking.  In later sections, the methodology will be applied to the 

translational portion of the problem, but first the attitude control is considered.  An initial 

trajectory is provided as an initial guess.  The trajectory is then perturbed in the solution 

space by varying higher order derivatives on the endpoints until an acceptable solution is 

found.  It should be noted that using inverse dynamics to optimize a rotational motion of 

a satellite has been already evaluated by other authors as well (Louembet, Cazaurang, 

Zolghardi, Charbonnel, and Pittet 2007; and McInnes 1998).  However, the Euler angles, 

suffering from well-known kinematic singularities were used, and no attempt to decouple 

the domains of space and time were made.  Furthermore, this research extends the 

situations to more realistic scenarios where nonzero rates and accelerations are present as 

in cases of target tracking and docking.    

A. SPACECRAFT MODEL AND ATTITUDE TRAJECTORY OPTIMIZATION 
PROBLEM 

The first step is to define the dynamics of the system in question, a reorienting 

spacecraft.  The rotational dynamics of the spacecraft can be described by Euler’s 

rotational equations of motion. Written in the body-fixed principal axis, this results in the 

vector equation (Greenwood 1987; Wie 1988): 

Iω ω Iω T+ × =� ,        (98) 

which expands into the scalar equations: 



 90

22 33

11

33 11

22

11 22

33

( )
,

( )
,

( )
.

y z x
x x

x z y
y y

y x z
z z

I I T
I

I I T
I

I I T
I

ω ω
ω α

ω ω
ω α

ω ω
ω α

− +
= =

− +
= =

− +
= =

�

�

�

                          (99) 

In turn, rotational kinematics can be described using quaternions, T
1 2 3 4[ , , , ]q q q q q= .  The 

definition of the quaternion is taken from Equation (8) where σ  is the scalar value of the 

rotational displacement about the eigenaxis and ρ  is unit vector that describes the 

direction of the eigenaxis.  The dynamics of the unit quaternion are described as 

(Greenwood 1987; Wie 1988): 
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In Equations (99) and (100), 11 22 33([ , , ])I diag I I I=  is the inertia matrix (along the 

principal axes), T[ , , ]ω x y zω ω ω=  is the vector of angular velocities, and T[ , , ]T x y zT T T=  

is the vector torques (bounded controls). 

The problem in question is to find the slew trajectory (quaternion time history) for 

a satellite subject to specific constraints that minimizes the time to complete the 

maneuver, ft . This is expressed as minimizing the PI: 

0

ft

J dt= ∫ ,                                      (101) 

while reorienting a satellite from the initial conditions 0ω , 0q  to final conditions ω f , q f  

for a system (99)-(100), subject to constraints on controls 

min maxT T T≤ ≤ .                              (102) 
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Bilimoria and Wie (1993) formulated this problem for a rest-to-rest maneuver and 

presented the solution using an indirect method. They showed that, in general, for the 

case of symmetric body with bounds on each torque component, it does not result in an 

eigenaxis maneuver. In addition to that, the following section presents even a more 

general solution obtained off-line to be used along with that of Bilimoria and Wie (1993) 

as a reference one for the proposed on-line solution obtained using a direct method 

exploiting inverse dynamics of Equations (99)–(100). 

Table 1 shows the different test cases examined in this chapter. Test Case 1 was 

taken directly from Bilimoria and Wie (1993), while the others were chosen to illustrate 

different scenarios of interest. 

 

Case Normalized Inertia Matrix 
Case 1 ([1,1,1])diag=I  
Case 2 ([3,1, 2])diag=I  

Table 16.   Description of the test cases. 

This chapter considers two basic scenarios assuming a φ  =90° and φ =180° slew 

maneuver about the z-axis (so that 0 [0,0,0,1]q T=  and 1 1
2 2[0,0,sin ,cos ]q T

f φ φ= ) with 

zero and nonzero normalized body rates at endpoints: a) 0 3 1ω ω 0f ×= = , b) 

1
0 3 110ω ω 1f ×= − = , and c) 0 3 1ω ω 1f ×= − = . For the normalized states, the constraints (5) 

take the form 3 1 3 11 T 1× ×− ≤ ≤ . 

B. SOLVING THE PROBLEM USING THE GAUSS PSEUDOSPECTRAL 
METHOD 

First, the problem formulated in Chapter IV.A is addressed using the same 

pseudospectral direct method as in Chapters II and III. The goal is to have some reference 

solutions for comparison to the solutions obtained through other methods, specifically 

IDVD. 

The optimal (Bilimoria and Wie 1993) solution has been matched using a 

different optimization method in previous work (Fleming 2004). 
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Figures 66–68 show the results of applying GPOPS to obtain minimum time 

solutions for a 180° slew of a satellite. Specifically, Figures 66 and 67 present time 

histories of all states and controls for the solution that involves 100 nodes, which results 

in (100-2)×10=980 variable parameters, derived from the 98 internal node points for each 

of the 7 state and 3 control variables.  Figure 68 depicts the 3D representation of the 

solution in inertial space, clearly showing that it is not an eigenaxis maneuver, with an 

inclination of the bz   axis during rotation in the b bx y    direction. 

This solution compares with the solution presented in Bilimoria and Wie (1993) 

fairly well. The final calculated maneuver time, ft , was found to be 3.243 seconds. 

However, it took almost two hours of CPU time to obtain this solution.  Another 

observation is that because of the nature of the system described by Equation (99), the 

optimal control has a bang-bang structure as shown in Figure 67.  That results in the 

maximum magnitude of the angular acceleration at the boundary points (for Case 1 

angular accelerations are simply equal to the corresponding controls). It means arriving at 

the terminal conditions with the maximum angular acceleration.  Also, if we have to 

update a trajectory while the satellite performs this rotation (to accommodate possible 

disturbances and unmodeled dynamics), it would cause discontinuities of angular 

acceleration (sudden jumps in controls).  Increasing the order of the system to account for 

the boundary conditions on angular accelerations will obviously cause a slight 

degradation of the PI and a further increase of the required CPU time to obtain a solution. 

Hence, although in this case GPOPS does produce a valid solution, as previously stated in 

Chapters II and III, it is not practical and currently cannot be used for online 

computations.  
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Figure 66.   Case 1 (GPOPS solution): time histories of the state variables. 

 

 

Figure 67.   Case 1 (GPOPS solution): time history of the controlling torques. 
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Figure 68.   Case 1 (GPOPS solution):  the 3D representation of the solution. 

As pointed out in GPOPS documentation (Rao et al. 2009), reducing the number 

of nodes may lead to a more robust (in terms of computational time) result, therefore an 

attempt was made to obtain a solution of the same problem using a lesser number of 

nodes. These GPOPS solutions are shown in Figures 69–71. 

It turns out that for a lesser number of nodes the GPOPS converges to different 

solutions. To this end, Figure 68 shows time histories of the angular velocity components 

for the 25- and 50-node solution (involving 230 and 480 varied parameters, respectively). 

Obviously, they are different from that of the 100-node solution in Figure 64. While a 25-

node solution is simply symmetrical with respect to the 100-node solution, as can be seen 

by comparing Figure 66 and Figure 68 showing an inclination of the bz  axis during 

rotation in the b bx y−  direction, and represents another equally optimal solution out of 

possible four solutions (Fleming 2004).  This is due to the equivalent possibilities of 

positive or negative inclination in the bz  direction coupled with possibilities of b bx y−  

and b bx y  directional rotation for the 180º maneuver about a principal axis.  The  
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possibility of the positive or negative inclination in the bz  direction also leads to two 

equivalent solutions for similar slews less than 180º.  A 50-node solution, shown in 

Figure 69, appears not to be valid (optimal) at all. 

As expected, decreasing the number of nodes leads to a substantial decrease in the 

computational time, but as shown above the method could produce a nonvalid solution. 

Also, even if it produces a valid solution the time histories for control torques, Figure 70, 

may not be trackable by the inner-loop controllers. Therefore, the solutions obtained by 

GPOPS may not be used in a real time feed-forward control scheme. 

 

Figure 69.   Case 1 (GPOPS solution):  comparison of time histories of angular velocity 
components obtained for 25 nodes (top) and 50 nodes (bottom). 
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Figure 70.   Case 1 (GPOPS solution):  comparison of time histories of torques, obtained 
for 25 nodes (top) and 50 nodes (bottom). 

 

Figure 71.   Case 1 (GPOPS solution):  the 3D representation of the 25-node  solution. 

For Case 2, the nonsymmetrical inertia with the bounds on individual control 

torques, the solution is slightly different (Figures 72–73).  The overall characteristic of 

this and other solutions involving different sets of the boundary conditions will be 
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presented in Chapter IV.E, but the general tendency is the same—it requires at least a 

hundred nodes to produce a valid and feasible off-line solution.  Yet, GPOPS again 

presents a good and easy-to-use tool to produce reference trajectories that can be used for 

comparison with solutions obtained using other approaches. 

 

 

Figure 72.   Case 2 (GPOPS solution): time histories of the state variables. 

 

Figure 73.   Case 2 (GPOPS solution): time history of the controlling torques. 
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C. APPLICATION OF INVERSE DYNAMICS IN THE VIRTUAL DOMAIN 
APPROACH WITH QUATERNION ATTITUDE REPRESENTATION 

One of the two main ideas of Inverse Dynamics in the Virtual Domain (IDVD) 

method is exploiting the differential flatness property of the equations of motion 

(Yakimenko 2000; Cowling, Yakimenko, Whidborne and Cooke 2007; Yakimenko and 

Slegers 2009).  In the above problem, this relates to the fact that all the state and control 

variables can be expressed as explicit functions of the output variable or time derivatives 

of the output variable, which in this case is the quaternion itself: 

1( , )ω q qf= � ,   2 ( , , )T q q qf= � �� .                  (103) 

Another aspect of IDVD involves handling computations in the virtual domain allowing 

space and time decoupling. By doing so, a trajectory can be computed while also 

manipulating the speed at which that trajectory is followed.  The following sections 

present a novel parameterization for the output variable, components of the quaternion, 

and develop a step-by-step computational scheme. 

1. Quaternion Parameterization 

In order to parameterize the problem, the output trajectory is approximated using 

some combination of basis functions. The standard approach would be to choose some 

combination of polynomials or trigonometric functions for the output variables 

(Yakimenko 2000; Cowling et al. 2007; Yakimenko and Slegers 2009).  While this may 

be straightforward when dealing with state variables in translational space, it may 

become more challenging when dealing with expressions for orientation. 

While a quaternion may be the preferred method to express attitude because of the 

lack of singularities, choosing basis functions becomes more challenging because a 

nonlinear unit norm condition needs to be preserved across the quaternion history (Milam 

2003).  Simply choosing arbitrary polynomials for the 1st three components of the 

quaternion and attempting to enforce the quaternion constraint is insufficient because it 

cannot be guaranteed the constraint will be met throughout the maneuver (specifically if 

one of the iterations on a polynomial provides a norm > 1 in any one of the components), 

so simply tacking on a penalty function for violating the constraint will not work.  For 
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this reason, a specific polynomial expression for the quaternion was chosen inspired by 

the work of Kim, Kim and Shin (1995).  This consists of expressing the quaternion time 

history as an exponential function containing a constant parameter multiplied by a Bezier 

polynomial of a degree n: 

0 ,
1

( ) exp( ( ))q q ω
n

i i n
i

τ β τ
=

= ∏ �� ,                                      (104) 

where 

, ,( ) ( )
n

i n j n
j i

β τ β τ
=

= ∑�                                                (105) 

and 

, ( ) (1 )n i i
i n

n
i

β τ τ τ−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.                       (106) 

A complete list of quaternion properties employed in this dissertation is stated in the 

Appendix.  Note, that in Equations (104)–(106) [ ]0;1τ ∈  an abstract argument is used 

instead of time. This allows us to exploit certain attributes of the Bezier polynomials and 

define properties at the beginning and endpoints.  For example, the analytic expressions 

of the 5th order Bezier Polynomial, ,5 ( )iβ τ� , are as follows: 
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             (107) 

In this case,  

( ) ( ) ( ) ( ) ( )0 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5( ) exp ( ) exp ( ) exp ( ) exp ( ) exp ( )τ β τ β τ β τ β τ β τ=q q ω ω ω ω ω� � � � �� � � � � .(108) 

A plot of the 5th order polynomials is shown in Figure 74. 
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Figure 74.   Value of 5th order Bezier Polynomials with respect to the virtual arc. 

These expressions have the favorable properties: 

,5 ( 00)iβ =�  and ,5 (1) 1iβ =� , for 1,...,5i = ;                 (109) 

1,5 5,5 1,5 5,5

,5 ,5
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             (111) 

which fix the value of the polynomial and its derivatives at the endpoints specified by 

values of 0; fτ τ⎡ ⎤∈ ⎣ ⎦  where we set fτ =1 that will act as an abstract virtual time argument 

to exploit the above properties in Equations (109)–(111). The values of ωi�  are 

coefficients defined by the following relation: 

1
1ln( ),  for  1, ,5i i i i−

−= =ω q q� � � … .                    (112) 
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Here, qi�  are the constant column vectors that act as control points and ωi�  represents a 

constant augmented angular velocity vector based on Equation (112). 

The prevailing idea is that at 0( 0)q qτ = = �  and 5( 1)q qτ = = � , where 0q�  and 5q�  

can be fixed such that 0 0( )q q t� �  and 5 ( )q q ft� � . This also results in a straightforward 

calculation of higher order derivatives of the quaternion curve with respect to the virtual 

domain argument τ . Results for the first derivative were presented in Kim for a 3rd order 

Bezier polynomial (Kim et al. 1995).  The results of the 2nd order derivative of a 5th 

order Bezier based quaternion is shown in Equation (113): 
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Differentials of quaternion trajectories based on varying order Bezier polynomials 

can be analytically calculated by proper application of the chain rule. The polynomial 

was expanded from a 3rd to a 5th order in order to fix the first and second derivative of 

the quaternion function at the endpoints. By applying Equations (105)–(109), therefore 

exploiting the property that certain terms ,5iβ� , ,5iβ��  and ,5iβ���  are equal to zero, derivative 

values at the endpoints can be calculated by the simple expression: 

0 1
0

5q q ωd
d ττ =

= � � , 55 5
1

5q q ωd
d ττ =

= � � .               (114) 

Note, in Equation (114), the first derivative, how the parameter ωi�  is related to the 

angular velocity at the endpoints.  In similar fashion, 
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2. Mapping from the Virtual Arc to the Time Domain 

Now that the trajectory is set using a virtual domain, a mapping must be 

employed to convert this trajectory into a time dependent one. To do this, a speed 

factor, λ , is defined that maps the points on the trajectory from the virtual domain to the 

time domain, therefore defining the final time of the maneuver: 

 d
dt
τλ = , 

0

ft

f
dt τ
λ

= ∫ .     (116) 

The Speed factor can be a constant parameter that simply stretches or shrinks time 

evenly or it can take the shape of more complex function.  For this application, ( )λ τ  is 

restricted to a function that contains a reduced number of varied parameters, developed  
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for this dissertation, that still allow for the speeding up and slowing down along a 

trajectory.  The representation is shown in Equation (117).   

( )2 2 2 2
0( ) (1 ) 1 (1 ) (1 )A B C Dλ τ λ τ τ τ τ= + + − + − − + −    (117) 

Obviously, more complex structures of ( )λ τ  will provide more flexibility in the 

trajectory. One main idea of Equation (117) is to keep ( )λ τ  positive for all time, as 

( )λ τ <0 would imply time marching backwards and ( )λ τ  =0 signifies that time has 

stopped.  Also, keeping the speed factor of a form such that an analytic integral to 

Equation (117) exists not only provides computational efficiency and an accurate 

integration to the minimum time PI but also provides a continuous mapping from the 

virtual domain to the time domain. Alternatively stated, a continuous control history is 

available, whose resolution does not suffer from a limited number of node points.  This 

attribute is later revisited in Chapter VI.D.2. 

Although a speed vector of the form Equation (117) does not allow matching the 

optimal minimum time solutions exactly, varying the parameters contained within ( )λ τ  

( 0λ , A, B, C, and D) still allows variation of the speed along the trajectory defined by 

Equation (104) to produce feasible and easy to track suboptimal solutions. 

3. Inverting the Dynamics 

As a result of the mapping from virtual to time domain, the expression for the 

differential of q  with respect to time is: 

q qq d d
dt d

λ
τ

= =� , 
2 2

2
2 2

q q qq d d d d
dt d d d

λλ λ
τ τ τ

= = +�� .        (118) 

Now, if the trajectory in the virtual domain, ( )q τ , is specified, along with the 

speed trajectory, ( )λ τ , the resulting trajectory of , ( )q t , as well as its higher order 

derivatives, can be analytically expressed and mapped to the time domain. 
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Inverting kinematic equations (100) and differentiating the result yields analytical 

expressions for the angular velocity and angular acceleration: 
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1
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               (119) 

The torque history needed to follow such a trajectory is calculated by inverting Equation 

(99): 
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            (120) 

4. Matching Endpoint Conditions 

From the preceding equations, a quaternion history can be developed based on the 

Bezier polynomial that satisfies predefined beginning and ending quaternion values as 

well as setting the angular velocity and angular acceleration at the endpoints. The desired 

angular velocity and acceleration dictate the quaternion derivatives at the endpoints to be 

as follows: 
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Based on the properties of the 5th order Bezier polynomial, the coefficients of the 

quaternion expression are then calculated by: 
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Here, q��  is computed using the second equation in Equation  (119) and the 

complementary qi�  parameters defined as: 
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and 

( )
2 1 2

1
3 5 4 5

  exp( ),

  exp( )exp( ) .

q q ω
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Finally, 

1
3 2 3 ln( )−= q qω � �� .                           (128) 

The resulting benefit of this laborious formulation is that the attitude trajectory 

history of a 4x1 q  vector, that satisfies the constraints of a unit quaternion, can be 

specified by a reduced set of parameters. These parameters are the initial and final 

conditions on the quaternion itself, as well as values of angular velocity and angular 

acceleration at those endpoints. 

5. Increasing the Polynomial Order 

More flexibility in the trajectory can be obtained by increasing the order of the 

Bezier polynomial used in the basis function.  For the case of a 7th order polynomial, the 

same structure as Equation (104) is employed but now with n=7.  The resulting 7th order 

polynomials are shown in Figure 75.   
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Figure 75.   Value of 7th order Bezier Polynomials with respect to the virtual arc. 

This leads to the introduction of 6q� , 7q� , 6ω�  and 7ω� , which are defined to be 

consistent with previous definitions from Equations (104) and (112).  If the values of 

orientation and angular velocity at the endpoints are set, endpoint conditions of angular 

jerk as well as angular acceleration can be used as varied parameters. Setting a specified 

(low) value for the initial and final jerk can be critical for slewing maneuvers of flexible 

spacecraft, in order to avoid excitation of structural modes.  To do this, the third 

derivative of the output vector is calculated as: 

23 2 2 2
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���          (129) 

The new expressions for the virtual derivatives are also recalculated, which are analogous 

to Equations (114) and (115) but with the addition of a third derivative to accommodate 

the change between 5th and 7th order polynomial: 
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New values for the constants that fix the initial conditions of the quaternion 

trajectory can be calculated similar to the 5th order polynomial, except and extra step 

needs to be taken to accommodate the third derivative of q . 

D. SOLVING THE PROBLEM USING IDVD METHOD 

This section presents the results of using IDVD method with two different 

parameterizations to obtain the minimum time solutions of the problem posed in Chapter 

III.A.  The Matlab function fmincon was used to optimize the trajectory while varying 

either the angular acceleration (for the 5th order polynomial) or the angular acceleration 

and jerk (for the 7th order polynomial) at the endpoints of the trajectory. Together with 

five varied parameters for ( )tλ , Equation (117), it yields 11 varied parameters for the 5th 

order polynomial approximation and 17—for the 7th order polynomial approximation. 

The constraints are that the resulting control must obey Equation (102) and ( )tλ  cannot 
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be 0≤  at any instant. Initial guesses for the angular acceleration and jerk are equal to 

zero and the initial guess of 10-4
 is used for all parameters contained in ( )tλ . 

1. IDVD Solutions Varying 2nd Derivative Results 

Figures 76–79 present the results obtained when applying the IDVD with a 

quaternion based on a 5th order Bezier polynomial (compare it with the GPOPS solution 

presented in Figures 66–68), allowing variation of the 2nd derivative at the endpoints. 

The solution was evaluated using 100 nodes (although, as opposed to GPOPS because the 

solution is analytic, it would be no difference running it for a larger or smaller number of 

nodes), resulted in slightly larger ft  but took significantly less time to compute at only 

10.0 seconds. 

 

Figure 76.   Case 1 (IDVD 5th order): time history of the quaternion. 
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Figure 77.   Case 1 (IDVD 5th order): time histories of the angular velocity and 
accelerations. 

 

Figure 78.   Case 1 (IDVD 5th order): time history of controlling torques. 

The major difference compared to the GPOPS solution is that the controls do not 

have a bang-bang nature anymore. Again, it was done intentionally by the choice of the 

quaternion parameterization. It occurs that when implemented in the real time controller, 

these controls will be easier to track. Also, having different controlling torques at the 

endpoints means having different angular accelerations. While for the GPOPS solution, 

the terminal angular accelerations are at the mercy of the optimization routine using 

IDVD allows matching them with the current accelerations, which also makes the control 

algorithm more robust.  Figure 78 shows the speed factor, the key element in matching 

the virtual and time domains. 
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Figure 79.   Case 1 (IDVD 5th order): mapping the virtual and time. 

Figure 80 shows an outline of the slew in inertial space, clearly showing that it is not an 

eigenaxis maneuver. 
 

 

Figure 80.   Case 1 (IDVD 5th order): principal axis outline of 180° slew. 
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The resulting solution for the same scenario using 25 nodes is shown in Figures 81–84. 

 

Figure 81.   Case 1 (IDVD 5th order): time history of the quaternion using 25 nodes. 

 

Figure 82.   Case 1 (IDVD 5th order): time histories of the angular velocity and acceleration 
using 25 nodes. 

 

Figure 83.   Case 1 (IDVD 5th order): time history of controlling torques using 25 nodes. 
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Figure 84.   Case 1 (IDVD 5th order):  mapping the virtual and time domains using 25 
nodes. 

The rate profiles for the solution of 25, 50, and 100 nodes are shown in Figures 85 

and 86.  Each case results in a smooth control solution regardless of the number of nodes 

chosen.  This is due to the construction of the quaternion history as well as the controls. 
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Figure 85.   Case 1 (IDVD 5th order):   comparison of angular velocity time histories, 
obtained for 25 nodes (top) and 50 nodes (bottom). 

 
 

Figure 86.   Case 1 (IDVD 5th order):  comparison of torque time histories, obtained for 25 
nodes (top) and 50 nodes (middle). 

 

 



 115

As in the case of GPOPS solution for Case 2, the nonsymmetrical inertia matrix 

causes a certain changes as compared to the symmetric matrix solution. The 100-node 

IDVD solution in this case results in 4.767s maneuver and requires about a minute to 

compute (see Figures 87–90). 
 

 

Figure 87.   Case 2 (IDVD 5th order): Time history of the quaternion. 

 
 
 

 

Figure 88.   Case 2 (IDVD 5th order): time histories of the angular velocity and 
acceleration. 
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Figure 89.   Case 2 (IDVD 5th order): time history of controlling torques. 

 

 

Figure 90.   Case 2 (IDVD 5th order):  mapping the virtual and time domains. 

2. IDVD Solutions Varying 2nd–3rd Derivative Results 

For the sake of comparison, Figures 91–94 present the solution of the same 

problem using a quaternion based on a 7th order Bezier polynomial, allowing variation of 

both the 3rd and 4th derivative at the endpoints. Although this slightly improves the PI, it 

drastically increases the computational time. The following section addresses this issue in 

more detail. 
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Figure 91.   Case 1 and 2 (IDVD 7th order): time history of the quaternions Case 1 (top) 
and Case 2 (bottom). 
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Figure 92.   Case 1 and 2 (IDVD 7th order): time histories of the angular velocity and 
acceleration for Case 1 (top) and Case 2 (bottom). 
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Figure 93.   Case 1 and 2 (IDVD 7th order): time history of controlling torques for Case 1 
(top) and Case 2 (bottom). 

 
 
 
 
 
 
 
 



 120

 

 

Figure 94.   Case 1 and 2 (IDVD 7th order): mapping the virtual and time domains for Case 
1 (top) and Case 2 (bottom) solutions. 

E. RESULTS AND COMPARISONS 

This section presents a comparison of the results obtained using the IDVD method 

with those of the GPOPS method. It disregards the fact that the results obtained with 

GPOPS for low number of nodes are infeasible but rather concentrates on the 

computational advantages the IDVD approach has for any number of intermediate points 
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(nodes in the case of GPOPS). To start with, Tables 17 and 18 summarize the 180º rest-

to-rest slew maneuver solutions for symmetric and asymmetric inertia matrix obtained 

using GPOPS and IDVD, as discussed in Chapters IV.C and IV.D. 

In these tables, all results are compared against the readily available eigenaxis 

maneuver solution. First, it is shown that the true optimal solution, obtained offline 

(Bilimoria and Wie 1993), which is not an eigenaxis rotation, provides about 8.5% and 

11% improvement of the PI, time of maneuver, for Case 1 and Case 2, respectively.  

As seen from Tables 17 and 18, the GPOPS solution converging to one of the 

equally optimal solutions (if at all), assures about the same gain in the PI as the truly 

optimal one. But, again, it takes significant computational time. Specifically, the 100-

node solution that does converge and assures a smooth controls history takes about an 

hour to converge. 

 

Table 17.   The 180º rest-to-rest slew maneuver about the z-axis, symmetric inertia (Case 1). 
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Table 18.   The 180º rest-to-rest slew maneuver about the z-axis, asymmetric inertia (Case 2). 

As discussed in the previous section, the IDVD solution has a much more robust 

performance, allowing computing the same type of maneuvers just in a few seconds as 

opposed to hours.  If an executable optimization library is implemented, the IDVD 

method produces solutions in fractions of a second (Yakimenko and Slegers 2009). Of 

course, some of the optimality (PI value) is sacrificed.  On the positive side, the solution 

is always feasible and smooth for any number of computational points, and can be 

brought closer to the GPOPS solution (in terms of the value of a PI) by increasing the 

number of varied parameters (the order of the quaternion approximation polynomial).  

Furthermore, since the resulting IDVD solution is analytic in nature, increasing the node 

points, after a solution is obtained, is a trivial evaluation of an analytic expression. 

As discussed in Chapter IV.B, this solution features a bang-bang control, i.e., does 

not account for controllers’ dynamics, and therefore can still not be used onboard as is. 

On the other hand, the always-feasible and ready-to-go IDVD solution (employing as low 

as say 25 computational points) can be produced much faster, but surrenders up to ⅔ of 

its gain as compared to that of the GPOPS solution (about ½ for the 7th order 

approximation). 

Tables 19 and 20 present similar data for the 90º rest-to-rest slew maneuver. 

While GPOPS provides about 3% gain compared to a simple eigenaxis slew solution, the 

IDVD method has almost no advantage or may be even worse if using a 5th order 

quaternion approximation. This is because, at some point, the gains made by having the 
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ability to calculate a bang-bang solution (with discontinuous controls) outweighs the 

benefits of having the ability to exploit the gains made by the effect of slewing off the 

eigenaxis.  All major conclusions, however, remain the same. 

 

Table 19.   The 90º rest-to-rest slew maneuver about the z-axis, symmetric inertia (Case 1). 

Tables 21 and 22 compare GPOPS and IDVD solutions for such case, when other 

sets of nonzero boundary conditions were explored as well, and proved to maintain the 

same trends. In this table, all results are compared against a valid 100-node GPOPS 

solution.  As seen, the GPOPS solutions with a lesser number of nodes produce 

somewhat infeasible solutions, meaning that they cannot be implemented in the control 

scheme explicitly. The IDVD solutions may yield to GPOPS as much as about 4% with 

respect to the PI, but again are produced much faster. Furthermore, as shown in Figures 

95 and 96, the 90º and 180 º rest-to-rest slew maneuvers with zero boundary rates feature 

multiple equally optimal solutions, so that both GPOPS and IDVD solutions converge to 

different solutions when changing the number of nodes (GPOPS) / computational points 

(IDVD).  In contrast, for the case of nonzero boundary rates, they all converge to the 

same solution,as shown in Figure 97. 
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Table 20.   The 90º rest-to-rest slew maneuver about the z-axis, asymmetric inertia (Case 2). 

It should be noted that in practice, the direct methods would likely be used in 

situations where the end-conditions (angular rates, accelerations) of the slew are specified 

and not equal to zero (to meet mission requirements of matching attitude rates of a 

tumbling vehicle, for example). For this case, no simple eigenaxis slew solution exists 

and therefore any solution produced on-line would be good.  The next chapter of this 

dissertation exploits the IDVD and coupling with translational maneuvers. 

 

Table 21.   The 90º maneuver for symmetric inertia (Case 1) and nonzero boundary rates, 
[ ]T

0 0.1 0.1 0.1ω ω f= − = . 
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Table 22.   The 90º maneuver for symmetric inertia (Case 1) and nonzero boundary rates, 
[ ]T

0 1 1 1ω ω f= − = − . 
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Figure 95.   Case 1: 180o rest-to-rest slew profile as projected onto the x-y inertial plane. 
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Figure 96.   Case 1: 90o rest-to-rest slew profile as projected onto the x-y inertial plane. 
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Figure 97.   Case 1: 90o slew profile, [ ]T
0 0.1 0.1 0.1ω ω f= − = , as projected onto the x-y inertial plane. 
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V. RAPID ATTITUDE AND TRANSLATIONAL TRAJECTORY 
GENERATION 

Inverse Dynamics in the Virtual Domain exploits the ability to take a polynomial 

of sufficiently high order and match desired values, and potentially derivative values, at 

its endpoints to generate a trajectory.  This is done by representing each position variable 

of the trajectory of the close approach maneuver in the orbital frame by a summation of 

polynomials and trigonometric basis functions.  While some endpoint conditions are 

specified based on the problem statement, higher order derivative of the endpoints can 

function as parameters that may be varied to optimize the trajectory based on a chosen PI.  

The remainder of this chapter explains the process in detail and applies the IDVD method 

to the benchmark problem stated in Chapter III. 

A. INVERSE DYNAMICS IN THE VIRTUAL DOMAIN FORMULATION 

First, a basis function for the translational trajectory is defined by Equation (133).   

2 3
0 1 2 3 0 0 1 1( ) sin( ) cos( ) sin( ) cos( )

2 2
p a a a a b c b cπ πτ τ τ τ τ τ πτ πτ= + + + + + + +  .    (133) 

This leads to 3 separate equations (and separate set of coefficients) for the x, y, and z 

position of the chaser vehicle each based on the form of the basis function described by 

Equation (133).  It should be reinforced that the trajectory described by Equation (133) 

with higher order derivatives shown by Equations (134)–(135), are constructed with 

respect to a virtual argument, 0; fτ τ⎡ ⎤∈ ⎣ ⎦ , and not time.  This specifies the trajectory in 

the spatial domain, but lets the speed the trajectory is traversed to be varied as well.       

 
2

1 2 3 0 0

1 1

2 3 cos( ) sin( )
2 2 2 2

cos( ) sin( )

a a a b cdpp
d b c

π π π πτ τ τ τ
τ π πτ π πτ

⎛ ⎞+ + + −⎜ ⎟′ = =
⎜ ⎟⎜ ⎟+ −⎝ ⎠

 (134) 

 

2 2
2

2 3 0 0
2

2 2
1 1

6 sin( ) cos( )
4 2 4 2

sin( ) cos( )

a a b cd pp
d

b c

π π π πτ τ τ
τ

π πτ π πτ

⎛ ⎞
+ − +⎜ ⎟′′ = = ⎜ ⎟⎜ ⎟− −⎝ ⎠

 (135) 
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The plots of the basis functions considered are shown in Figure 98: 
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Figure 98.   Basis functions considered for translational trajectory generation. 

1. Mapping the Virtual Arc and Specifying Endpoint Values 

The same structure of the virtual time argument is used as in Chapter IV.B.2, 

Equation (117).  This allows for 5 varied parameters that determine the history of the 

speed factor, λ , over the duration of the maneuver.  The endpoint values of the basis 

functions are simply set to the beginning and ending values of the maneuver in the spatial 

domain.  The derivative values at the endpoints and their derivatives in the virtual domain 

are calculated based on the time derivatives at the endpoints and speed factor shown in 

Equations (136) and (137). 

 
0

0 0

( ) ( )( ) / ( ) ,    ( ) / ( )

for , ,

i f i
i f f i

dp t dp tp t t p t t
d d

i x y z

λ λ
τ τ

= =

=

� �
 (136) 
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and 
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. (137) 

In order to specify the 2nd derivatives at the endpoints, a basis function with a reduction 

in the number of coefficients is used (Yakimenko 2000; Yakimenko and Slegers 2009): 

 2
0 1 2 0 1 1( ) cos( ) sin( ) cos( )

2
p a a a c b cπτ τ τ τ πτ πτ= + + + + + . (138) 

The resulting coefficients are then be derived according to the algebraic relation in 

Equation (139). 
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 (139) 

For higher order basis functions that are capable of specifying jerk at the 

endpoints, the basis function is specified as Equation (133) and the coefficients are 

obtained by solving the algebraic relation in Equation (140).  
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2. Implementation of Quaternion Based Attitude Representation 

The attitude implementation of IDVD for the close rendezvous problem described 

in Chapter III is done similar to Chapter IV.B.  The proper Bezier polynomial is chosen 

such that the desired boundary conditions can be met as well as allowing variation of the 

next highest derivative.  One major difference is that the attitude trajectory is formulated 

in the orbital frame instead of the inertial.  The angular rates with respect to the inertial 

frame are then computed, based on Equation (141), and used to determine the resulting 

control torques in the body frame. 
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2 3 1 4
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3. Alternative Euler Angle Formulation for Attitude Representation 

Considering an Euler angle representation of a 2-1-3 with respect to the orbital 

reference frame rotation can be expressed by the angular displacements ,  ,  and θ φ ψ  

pertaining to angular displacements about the y, x and then z body axis respectively (Sidi 

1997).  The angular rates with respect to the orbit frame can then be expressed as: 
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                                     (142) 

The angular rates with respect to the inertial frame can then be expressed as: 
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                   (143) 

The resulting angular accelerations, with respect to the inertial frame expressed in the 

body frame becomes: 
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          (144) 

This equates to the required inertial torque expressed in the body frame dictated by: 
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 (145) 

This formulation allows complete description of the attitude trajectory in the orbital and 

inertial frames and the associated rates and inertial torques by specifying initial and final 

conditions on , ,  θ ψ and φ  as well as their higher order derivatives. 

B. SOLVING THE IDVD PROBLEM 

For the close rendezvous problem with the IDVD formulation, the Sparse 

NOlinear OPTimizer (SNOPT) (Gill, Murray, and Saunders 1996) was used to solve for 

the resulting trajectory.  For this implementation, the objective function was the PI based 

on the specific type of cost function.  The problem constraints were programmed as: 

 

min max
2 2 2 2

max

( ) 0
( ) 0

f f

x y z r

t t
λ τ τ

− ≤ ≤

+ + − ≥
> ∀

≤

control constraint: u u u

path constraint:      
time constraints:     
                                  

 (146) 

with the limits on u and value of r set to those used in Chapter III.  It is reinforced that, 

with the IDVD method, the dynamic constraints (equations of motion) of the problem and 

desired endpoint conditions are always satisfied exactly at every iteration.  If the problem 

is not stated such that a solution does not exist, judicious (or sometimes common sense) 

selection of the initial guess on the varied parameters, conservative guesses on the 

endpoint derivatives and speed factor coefficients, will lead to always having a feasible 
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solution to implement.  This is not the case with pseudospectral methods, since at any 

given iteration, the kinematic and dynamic constraints in the equations of motion are not 

guaranteed to be satisfied and may result in an infeasible solution. 

C. COMPUTATIONAL RESULTS 

Both IDVD methods of matching endpoint translational and angular position and 

velocities are used to generate solutions.  The 1st set of endpoint parameters is considered 

to be the position and the 2nd set of endpoint parameters is the velocity.  The IDVD (3rd) 

method refers to varying the set of 3rd parameters, accelerations, at the endpoints while 

the IDVD (3rd–4th) method refers to varying both the third and fourth parameters, 

accelerations and jerk. 

1. Minimum Energy Cost Varying 3rd Parameter Set Results 

The results for using the IDVD (3rd) method for a minimum energy cost, 

Equation (15), are shown next.  They are based on the translational basis Equation (139) 

and the quaternion attitude formulation employing the 5th order Bezier polynomial.  The 

result is suboptimal when compared to the infinite dimensional optimal control problem 

solution, but is optimal based on the additional constraint of only using the specified 

polynomial set of basis functions.  This reduces the number of varied parameters to 17 

(the third derivative of each state plus the coefficients of the speed factor), resulting in a 

computational time of 12.2818 seconds.  The final PI based on the minimum quadratic-

control cost is J = 0.2461.  Figure 99 shows the 3D representation of the trajectory in 

Figure 100 shows the planar projection of the same trajectory.  The control solution is 

shown in Figure 101, which is smooth over the interval, consistent with the optimal 

solution found in Chapter III.C.2.  Figures 102 and 103 show the time history of the 

endpoint discrepancies and verify that the endpoint conditions were met at the final time.  

The solution using this specific formulation and cost is highly attractive due to it’s 

inherent low fuel cost and the attribute that the solution does not demand that the 

actuators be saturated at any given instant, unlike the bang-bang and bang-off-bang 

nature of minimum time and minimum fuel cost functions respectively.  Specifically, this 

noncontrol-saturated, smooth trajectory is desirable as the spacecraft is in the final stages 
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of matching docking points.  The speed factor, a representative measure of how fast the 

chaser is moving along the spatial trajectory, is shown in Figure 104. 

 

Figure 99.   Minimum energy solution (IDVD 3rd): 3D optimal rendezvous trajectory. 
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Figure 100.   Minimum energy solution (IDVD 3rd): 2D planar projection of the trajectory. 
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Figure 101.   Minimum energy solution (IDVD 3rd):  control history. 
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Figure 102.   Minimum energy solution (IDVD 3rd):  history of the translational endpoint 
discrepancies. 
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Figure 103.   Minimum energy solution (IDVD 3rd):  time history of the rotational endpoint 
discrepancies. 

 

Figure 104.   Minimum energy solution (IDVD 3rd):  time history of the speed factor. 
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2. Minimum Time Cost Varying 3rd Parameter Set Results 

The final PI based on the minimum time cost is J = 3.734 seconds.  Figure 105 

shows the 3D representation of the trajectory in Figure 106 shows the planar projection of 

the same trajectory.  The control solution is shown in Figure 107, which although is 

smooth by construction, approaches the bang-bang nature of an optimal solution 

computed with respect to a minimum time cost function presented in Chapter III.C.1.  

Figures 108 and 109 show the time history of the endpoint discrepancies and verify that 

the endpoint conditions were met at the final time.  Figure 110 shows the speed factor, 

which revels that the chaser is speeding up along the spatial trajectory and then slowing 

down as it approaches the final desired states.  This type of qualitative behavior is 

inherent to bang-bang, minimum time solutions to general maneuvers which apply max 

control at the beginning to increase speed of the maneuver, then max control at the end to 

decrease speed and arrive at the desired final states.    

 

 

Figure 105.   Minimum time solution (IDVD 3rd): the 3D optimal rendezvous trajectory. 
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Figure 106.   Minimum time solution (IDVD 3rd): 2D planar projection of the trajectory. 
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Figure 107.   Minimum time solution (IDVD 3rd):  control history. 
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Figure 108.   Minimum time solution (IDVD 3rd):  history of the translational endpoint 
discrepancies. 
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Figure 109.   Minimum time solution (IDVD 3rd):  history of the rotational endpoint 
discrepancies. 
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Figure 110.   Minimum time solution (IDVD 3rd):  time history of the speed factor. 

3. Minimum Fuel Cost Varying 3rd Parameter Set Results 

The final PI based on the minimum fuel cost is J = 2.8312.  Figure 111 shows the 

3D representation of the trajectory in Figure 112 shows the planar projection of the same 

trajectory.  The control solution is shown in Figure 113. Upon close inspection, the 

control solution for each component has more action at the beginning and ends of the 

maneuver, exhibiting qualities of a bang-off-bang structure consistent with the cost 

function presented in Chapter III.C.1.  Figures 114 and 115 show the time history of the 

endpoint discrepancies and verify that the endpoint conditions were met at the final time.  

Figure 116 shows the speed factor, which is similar to the minimum energy solution 

presented in the previous section.   
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Figure 111.   Minimum fuel solution (IDVD 3rd): the 3D optimal rendezvous trajectory. 
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Figure 112.   Minimum fuel solution (IDVD 3rd): 2D planar projection of the trajectory. 
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Figure 113.   Minimum fuel solution (IDVD 3rd):  control history. 
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Figure 114.   Minimum fuel solution (IDVD 3rd): history of the translational endpoint 
discrepancies. 
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Figure 115.   Minimum fuel solution (IDVD 3rd):  history of the rotational endpoint 
discrepancies. 

0 1 2 3 4 5 6 7 8
0.12

0.13

0.14

0.15

0.16

0.17

Time, s

S
pe

ed
 fa

ct
or

  λ

 

Figure 116.   Minimum time solution (IDVD 3rd):  time history of the speed factor. 
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4. Minimum Energy Varying 3rd–4th Parameter Set Results 

The problem stated in Chapter V.B.1 is also solved using the IDVD (3rd–4th) 

method based on the minimum energy cost function from Equation (15).  The results are 

extremely similar to the solution, as shown in the 3-D trajectory of Figure 117, to the 

same problem formulation based on the IDVD (3rd) method, except the increased 

flexibility in the polynomial due to the extra basis functions allows for smoother controls 

at the endpoints, as shown in Figure 118 and later in Figure 123, when compared with 

IDVD (3rd).  The solution took 623 seconds to compute and had a PI of J= 0.2458, only a 

0.12% reduction in PI.  It should be noted that using this formulation, you can specify 

constraints on the jerk profiles while still using the acceleration profile as your control 

vector.  This attribute is based on the polynomial formulation of the trajectory and cannot 

be implemented using pseudospectral techniques.  To set constraints on jerk using 

pseudospectral techniques, the control vector would have to be based on jerk and not 

acceleration. 

 

Figure 117.   Minimum energy solution (IDVD 3rd–4th): 3D optimal rendezvous trajectory. 
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Figure 118.   Minimum energy solution (IDVD 3rd–4th):  control history. 

5. Minimum Time Varying 3rd–4th Parameter Set Results 

The minimum time solution using the IDVD (3rd–4th) method is shown in Figure 

119.  It has a PI of J = .3.6582 and took 86.6 seconds to compute.  The 3D trajectory 

looks similar to that obtained by IDVD (3rd), but the extra flexibility in the polynomial 

provided by an increased set of basis function allows for shaper transitions in the 

controls, shown in Figure 120, mimicking that of a bang-bang controller.  Although the 

computational cost rose to 86.6 seconds, it is still well below the 8+ hour computational 

cost of GPOPS for a 200 node representation.  
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Figure 119.   Minimum time solution (IDVD 3rd–4th): 3D optimal rendezvous trajectory. 
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Figure 120.   Minimum time solution (IDVD 3rd–4th):  control history. 
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6. Minimum Fuel Varying 3rd–4th Parameter Set Results 

The minimum fuel solution obtained using the IDVD (3rd–4th) method is shown 

in Figure 121.  Again, the trajectory is very similar to the solution calculated from the 

IDVD (3rd) except the increased flexibility allows for shaper transitions in control at the 

endpoints.  The bang-off-bang type of control is evident from examining the control 

histories in Figure 122.  The resulting PI is J = 2.7552, taking 405.5 seconds to compute.   

 

Figure 121.   Minimum fuel solution (IDVD 3rd–4th): 3D optimal rendezvous trajectory. 
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Figure 122.   Minimum fuel solution (IDVD 3rd–4th):  control history. 

7. Propagated IDVD Solutions 

As with the solutions obtained by the pseudospectral method in Chapters II and 

III, the solutions for the controls obtained with the IDVD method were propagated using 

the same mechanism as the pseudospectral method stated in Chapter III.C.4.  The 

resulting discrepancies in the endpoints resulting from all three cost functions using the 

IDVD (3rd) method are displayed in Tables 23–25, with minimum time plotted in Figures 

123–124.  
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Figure 123.   Translational discrepancies for propagated IDVD (3rd) minimum time 

solution. 
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Figure 124.   Rotational discrepancies for propagated IDVD (3rd) minimum time solution. 
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e Resulting Value e Resulting Value e Resulting Value 
e1(tf) 0.0006 e8(tf) 0.0013 ζ2(tf) N/A 
e2(tf) -0.0002 e9(tf) -0.0001 ζ3(tf) N/A 
e3(tf) 0.0002 e10(tf) -0.0009 ζ4(tf) N/A 
e4(tf) -0.0009 e11(tf) -0.0003 ζ5(tf) N/A 
e5(tf) 0.0004 e12(tf) 0.0001 ζ6(tf) N/A 
e6(tf) -0.0009 e13(tf) -1.0211e-005 ζ7(tf) N/A 
e7(tf) 0.0055 ζ1(tf) N/A H(tf) N/A 

Table 23.   Value of terminal conditions at the final time for IDVD (3rd) minimum time solution. 

 
 
 
 

e Resulting Value e Resulting Value e Resulting Value 
e1(tf) 0.0041 e8(tf) 0.0003 ζ2(tf) N/A 
e2(tf) -0.0050 e9(tf) 1.4198e-006 ζ3(tf) N/A 
e3(tf) -0.0023 e10(tf) -0.0020 ζ4(tf) N/A 
e4(tf) -0.0029 e11(tf) -0.0001 ζ5(tf) N/A 
e5(tf) 0.0021 e12(tf) -0.0015 ζ6(tf) N/A 
e6(tf) -0.0002 e13(tf) -0.0007 ζ7(tf) N/A 
e7(tf) 0.0016 ζ1(tf) N/A H(tf) N/A 

Table 24.   Value of terminal conditions at the final time for IDVD (3rd) minimum energy 
solution. 

 
 
 
 

e Resulting Value e Resulting Value e Resulting Value 
e1(tf) 0.0019 e8(tf) 0.0017 ζ2(tf) N/A 
e2(tf) -0.0011 e9(tf) 2.6406e-005 ζ3(tf) N/A 
e3(tf) -0.0002 e10(tf) -0.0026 ζ4(tf) N/A 
e4(tf) -0.0027 e11(tf) -0.0004 ζ5(tf) N/A 
e5(tf) 0.0014 e12(tf) -0.0005 ζ6(tf) N/A 
e6(tf) -0.0008 e13(tf) -0.0011 ζ7(tf) N/A 
e7(tf) 0.0036 ζ1(tf) N/A H(tf) N/A 

Table 25.   Value of terminal conditions at the final time for IDVD (3rd) minimum fuel solution. 
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8. Summary of Close Approach Results for Baseline Maneuver 

Results for different variations of the IDVD theme pertaining to the baseline 

maneuver introduced in Chapter III and discussed throughout this dissertation are 

summarized in Table 26.   

cost
Min   
Time

Min 
Energy

Min   
Fuel

Min       
Time

Min    
Energy

Min   
Fuel

Final Time 3.5086 8.8943 8.1182 3.7775 10.0000 9.0792
Energy 10.4471 0.2445 1.1587 5.0869 0.3495 0.5738

Fuel 20.9419 3.6941 2.4863 13.3627 4.8462 3.9329
CPU Time 33,370.1 86,040.7 84,261.6 10.6 6.8 11.0

GPOPS
IDVD (Euler Angles)             

(vary endpoint accelerations)

 

cost
Min  

Time
Min 

Energy
Min   
Fuel

Min       
Time

Min    
Energy

Min    
Fuel

Final Time 3.7341 8.8868 7.5181 3.6582 8.9137 8.1442
Energy 5.2641 0.2461 0.3875 6.2309 0.2458 0.4131

Fuel 13.4202 3.7177 2.8312 15.0982 3.7044 2.7552
CPU Time (sec) 11.5 16.1 32.1 86.6 623.0 405.5

IDVD (quaternions)          
(vary endpoint accelerations)

IDVD (quaternions)             
(vary endpoint jerk/accelerations)

 

Table 26.   Summary of performance indices and computational time for a variety of trajectory 
generation methods. 

For the cases of GPOPS and IDVD employing quaternions, Figure 125 shows the 

resulting minimum energy control histories represented in a single plot.  Both the control 

histories calculated using IDVD match well with the solution provided by GPOPS.  The 

similarities of the solutions are further reinforced by the small deviation in PI with the 

3rd derivative IDVD solution, IDVD (3rd), having a PI within 0.65% of the GPOPS 

solution and the IDVD (3rd–4th) solution, IDVD (3rd–4th), falling within 0.54%.  
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Figure 125.   Control history of different methods for the minimum quadratic-control 
problem formulation.  

The overlaid control histories for the minimum time case are shown in Figure 126.     

 

Figure 126.   Control history of different methods for the minimum time problem 
formulation. 
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For the minimum time case, the reduced performance of the IDVD solutions is 

mainly due to the inability to implement a bang-bang control strategy.  This is because 

the IDVD results in a smooth, continuous function by construction.  Although the IDVD 

(3rd–4th) strategy is more flexible, having the added capability to modify the endpoint 

jerk values, it still cannot implement the discontinuous switch of control values inherent 

to a minimum time solution for this type of problem and shows only minor improvement 

over the IDVD (3rd) strategy.  Although, previous work calculating bang-bang solutions 

needed to generate an extra control of layer in order to have the required smooth control 

history for interpolation (Hurni 2009).  The PI of the IDVD (3rd) solution was within 

6.5% of the GPOPS solution and the IDVD (3rd–4th) solution was within 4.3%.     

The minimum fuel solutions are shown in Figure 127.  Although the IDVD 

solutions have a slightly higher PI, they avoid the rapid switching characteristics 

portrayed by the GPOPS solution inherent to the bang-off-bang control nature associated 

with the cost function described by Equations (59) and (62).  The solution provided by 

IDVD is also smooth through a region that GPOPS provides a highly oscillatory solution 

incapable of being implemented.  The trade off, of course, is the slightly higher PI 

associated with the solution, 13.9% increase for IDVD (3rd) and 10.8% for IDVD (3rd–

4th).  

 

Figure 127.   Control history of different methods for the minimum fuel problem 
formulation.  
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VI. FURTHER SIMULATIONS AND ANALYSIS 

This chapter analyzes the rendezvous final approach problem in several different 

ways.  First, the methods developed in this dissertation are applied to previously 

published examples.  Concepts for closed-loop, real time operations are derived and 

demonstrated in simulation.  Finally, the Inverse Dynamics in the Virtual Domain method 

is applied to a variety of scenarios with different initial conditions. 

A. COMPARISON WITH PREVIOUS STUDIES 

1. Problem Formulation in Two Dimensions 

Simulations were run to compare results with those published in previous 

literature.  Specifically, the planar case of Ma (Ma et al. 2007) that is based on the 

Sakawa Shindo (SS) algorithm (Sakawa and Shindo 1980).  This article attempts to solve 

the planar motion minimum time problem of a spacecraft matching position and 

orientation with a docking point that is rotating.  The state vector is defined as: 

 [ ]Txr r r r xr yr rx y v vθ ω=  (147) 

The subscript r indicates the relative motion of the chaser with respect to the 

RSO, observed from the targets body fixed frame.  There are two force controls u1 and u2, 

respectively fixed in the x and y chaser spacecraft body frame and one control torque u3 

fixed along the z axis.  The controls are bounded such that: 1 1u− ≤ ≤ .  The initial and 

final conditions are given as: 

 0 (10 10 / 2 1 1 1)

(1 0 0 0 0 0)

T

T

x

x
r

rf

π=

=
 (148) 

Since the algorithm needs a final time, ft , as in input, the method is to solve a 

minimum fuel problem, reducing ft  at each iteration.  This iteration of iterations method 

can be computationally expensive, and the inability to find a solution using the SS 

algorithm does not guarantee that one does not exist.  Furthermore, relative motion due to 
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the rotating reference frame (not inertially fixed) and the mean motion due to Hill’s 

equation are neglected.  For more information on the SS algorithm, the reader is directed 

to (Sakawa and Shindo 1980; Sakawa 1999).  Although the algorithm claims to satisfy 

Pontryagin’s Minimum Principle at every iteration, no information about the costates or 

transversality conditions are supplied.  The final minimum time solution arrived at by this 

method is 8.14 seconds using 200 nodes for numerical integration by the Heun method 

(Chyba, Leonard and Sontag 2000).  The computation time was claimed to take several 

minutes, but not stated.  Instead, the author stated that the computational time was not the 

focus of the research, only the computation of a feasible solution. 

2. Direct Method (GPOPS) Formulation and Results 

The same problem is solved by restricting the GPOPS and IDVD formulations 

derived in previous sections to two dimensions.  The resulting solution for GPOPS 

provided a minimum time for the maneuver to be 7.6695 seconds.  The resulting plot of 

chaser x and y coordinates fixed are presented in the RSO body frame, as in Ma (2007), is 

shown in Figure 128.  The control histories are shown in Figure 129, as well as the 

switching conditions developed in Chapter III.B.  The controls obey the bang-bang nature 

stated in Ma (2007) and Chapter III of this dissertation, which are dictated by the 

switching functions.  The controls presented in Ma are said to approach the bang-bang 

structure but appear rather smooth.  Figures 130 and 131 show the time history of the 

endpoint conditions, the difference in position and velocity of the docking points, as well 

as angular rate and orientation of the vehicles, converging to zero.  The transversality 

conditions and Hamiltonian shown in Figures 132 and 133 further reinforce the optimal 

nature of the control for the minimum time cost.  Still, the major drawback of this 

formulation and method is that the calculation time of the solution was 1,416.2 seconds 

(23.6 minutes) for only a 50 node solution (not shown), and the calculated solution for 

200 nodes, shown in Figures 128–133, required 40,659.0 seconds of computational time.   
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Figure 128.   2D Case (GPOPS): optimal minimum time trajectory of the chaser in the RSO 
body frame.  
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Figure 129.   2D Case (GPOPS): optimal minimum time control history.  
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Figure 130.   2D Case (GPOPS): history of the translational endpoint conditions. 
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Figure 131.   2D Case (GPOPS): history of the attitude endpoint conditions.  
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Figure 132.   2D Case (GPOPS): history of the transvervsality conditions. 
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Figure 133.   2D Case (GPOPS): history of the Hamiltonian. 

For comparison purposes, the GPOPS method was run with a minimum fuel cost 

based on Equation (93) but with a multiplier of 0.005 (Ma et al. 2007) and a maximum 

final time of 8.14 seconds.  The solution took 1,953.1 seconds (32.6 minutes) to calculate 

a 50 node solution and provided a PI of 0.0574 (compared to the 0.0788 PI result from 

the SS based method).    
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3. IDVD Formulation and Result 

The IDVD method was also used to calculate the trajectory based, shown in 

Figure 134, on the 2D problem posed by Ma (Ma et al. 2007).  The associated control 

history is shown in Figure 135.  The endpoint conditions are shown in Figures 136 and 

137.  Again, the same formulation and methodology was used as in Chapter V.A, varying 

acceleration at the endpoints, but the problem was constrained to planar motion.  The 

resulting costs and plots were generated using 200 points (the resulting IDVD is analytic, 

so any number of nodes or waypoints can be used to present the final solution).  This 

final time calculated, 8.7525 seconds, is higher than both the previous methods, but the 

solution only took 10.3 seconds to compute.  When the IDVD (3rd–4th) method is used, 

the final time to complete the maneuver is decreased to 8.2086 seconds, but the 

computational time to arrive at the solution increase to 214.7 seconds.   
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Figure 134.   2D Case (IDVD): minimum time trajectory of the chaser in the RSO body 
frame.  
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Figure 135.   2D Case (IDVD 3rd): minimum time control history.  
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Figure 136.   2D Case (IDVD 3rd):  history of the translational endpoint conditions. 
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Figure 137.   2D Case (IDVD 3rd): history of the attitude endpoint conditions.  

The increased flexibility of the IDVD (3rd–4th) basis functions permits the 

solution to behave more like the bang-bang structure of the optimal solution, allowing for 

a reduced final time for the maneuver to complete. 

4. Comparisons of Trajectory Generation Methods for 2D Example  

Table 27 shows a comparison between methods for the minimum time solution.  

200 nodes were chosen for the calculation and a factor of 0.005 was multiplied by the 

minimum fuel cost to be consistent with previous literature (Ma 2007).  Although IDVD 

(3rd) has a greater final maneuver time, the computational time is drastically reduced.  

The computational time, simply stated as several minutes, and final minimum energy cost 

of the SS solution presented by Ma (2007), were not reported.  The solution providing the 

best minimum time cost was the bang-bang solution solved for by GPOPS, but the 

solution came at an extensive computational price.     
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GPOPS
IDVD 
(3rd)

IDVD 
(3rd-4th) Ma (SS)

cost
Min   
Time

Min      
Time

Min      
Time

Min       
Time

Final Time 7.6695 8.7525 8.2086 8.1400
Energy 11.3266 5.9307 6.9566 N/A
Fuel* 0.1135 0.0779 0.0824 0.0788

CPU Time (sec) 40,659.0 10.3 214.7 N/A  

Table 27.   Summary of performance indices and computational time for a 2D scenario. *A factor 
of 0.005 was multiplied by the minimum fuel cost to be consistent with the formulation 

presented by Ma (2007). 

B. CYCLICAL NATURE OF PROBLEM SOLUTION PERFORMANCE 
INDEX 

The performance index of rendezvous of a spacecraft with a tumbling object 

exhibits a cyclical nature as seen by Figures 138 and 139 for two scenarios.  Figure 138 

shows the cyclic nature of the PI with respect to a time value associated with waiting to 

start the maneuver.  If the initial angular velocity of the RSO occurs around a principal 

moment of inertia, then the motion of the docking point is periodic, containing only 

circular motion in the plane perpendicular to the angular velocity vector.  A simple 

example of fixing λ =1 for the entire maneuver and then varying the wait time before 

maneuver start (in essence is the same as varying the initial orientation of the RSO), 

shows that the PI associated with completing the maneuver is periodic with time.  Figure 

139 shows the cyclic cost nature for the case of the docking point motion, not being 

constrained to a plane perpendicular to the initial angular velocity vector of the RSO.  

Such is the case of the RSO having a nonidentity inertia matrix and initial angular 

velocity vector that is not coincident with a principal moment of inertia, the PI is cyclic, 

but does not repeat.  For this case, the time value shown is the total time of the maneuver.  

For both cases, there is an inherent cyclical nature to the PI pertaining either the wait time 

until commencing the maneuver or the total time of the maneuver.  This added 

complexity demonstrates the increased influence of the maximum final time on the 

solution.  For any given circumstance, allowing more time to perform the maneuver may 

not necessarily decrease the PI for minimum fuel or minimum energy maneuvers as 

would be the case if rendezvous was to a fixed point in space.  For this reason, initial 
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guesses should be chosen judiciously and when possible, as stated in Chapter V.B, and 

should provide a feasible solution.  This way, since the kinematic and dynamic equations 

are always satisfied though IDVD, there is always a solution to implement at any given 

time should the user want to terminate the optimization routine.    

 

Figure 138.   Energy and fuel costs for rendezvous with a tumbling RSO with symmetric 
inertia matrix.  The time shown is a wait time until the start of the maneuver.  

 

Figure 139.   Energy and fuel costs for rendezvous with a tumbling RSO with an asymmetric 
inertia matrix.  The time shown is the total maneuver time.  
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C. FLEXIBILITY AND ROBUSTNESS OF IDVD TECHNIQUE 

The purpose of this section is not to generate an exhaustive list of potential 

advantages and implementations of the IDVD methods described in the previous section, 

but to further educate the reader on concepts in order to facilitate new ideas.  The 

minimum energy example was selected for further analysis and implementation based on 

its nature to minimize control effort over the entire maneuver.  It has inherent fuel-

minimizing qualities as well as other attractive attributes.  The minimum energy cost 

based maneuver does not have the trait of commanding maximum (or saturated) controls 

during the terminal phase of docking.  The extra control margin makes it the most 

responsive and safe if sudden changes in trajectory are needed, a potential necessity if 

closed loop implementation is to be considered.  Having low control action also lowers 

potential effects of plume impingement as opposed to maximum thrust.  These combined 

attributes make it the preferred choice for implementation.   

1. Real Time Trajectory Reshaping 

Because the IDVD solution is analytic in nature and incorporates prescription of 

the endpoint values as well as their derivatives, it allows for the possibility of 

implementation in a closed-loop fashion.  If, for example, the minimum energy trajectory 

(which does not saturate the actuators at any point) solution was calculated using the 

IDVD method, the resulting varied parameters would vary the higher level derivatives at 

the endpoints, since the state values and their respective first derivatives were set based 

on the projected state of the RSO at the final time as well as the initial conditions of the 

chaser craft.  Even after a solution is calculated, if updated information about the current 

states of the RSO were obtained and the final state values of the RSO were to change 

(due to unmodeled dynamics or disturbances), this information can be reintroduced into 

the trajectory generation method to ensure that the endpoints of the trajectory met the 

desired conditions.  Mathematically speaking, the varied parameters, already solved for, 

would not change, but, keeping the conditions at the beginning of the trajectory fixed, the 

specified conditions at the ending point, tf, would be tweaked in order to match the best 

projected conditions of the RSO docking point, resulting in new coefficients for the 
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polynomials and therefore instantly reshaping the trajectory.  The new trajectory may not 

be optimized with respect to the slight changes in state variables, but it would be the best 

solution based on the given constraints (having a feasible trajectory that ends with the 

desired conditions on the chaser and its docking point) without going through another 

iteration process.  This is in contrast to current iterative real time closed loop optimal-

control studies that are performed in simulation, (McFarland et al. 2009), and assume 

solutions can be obtained in whatever specified update rate is needed, stopping the 

simulation to compute the optimal control, which can take several minutes to hours 

depending on computer performance and desired solution resolution.  The following two 

examples are used to highlight the noniterative reshaping trait of the proposed IDVD 

controller.  In the first scenario, the inertia matrix of the RSO is thought to be known as I 

= diag([3,1,2]); therefore, it is used to project the states of the RSO at tf based on the 

initial conditions of the RSO and Euler’s equations for rotational motion.  For this 

exercise, we assume the solution of the varied parameters that optimize the rendezvous 

maneuver is already known and the conditions are such that the problem is the same as 

discussed in previous sections based on Table 1.  The only difference is that now the 

actual inertia of the RSO is I = diag ([1,2,3]).  The second scenario involves correct 

knowledge of the RSO inertia, but the presence of an unknown constant thrust in the 

body frame (such as a thruster that is failed on).  New (ideal) RSO state information is 

available at a rate of 10 Hz, allowing the trajectory generator to reshape in real time 

based on the new projected endpoint values.  A block diagram of the process is shown in 

Figure 140.   

In the previous sections, the IDVD Solver coupled with the Trajectory Generator 

was treated as the same system.  It should be noted that, in fact, they can be separated in 

order to exploit specific advantages to the IDVD method.  The key difference between 

the IDVD Solver and the Trajectory Generator is the IDVD Solver iterates on the varied 

parameters (the higher level derivatives of a given trajectory at the endpoints) and uses 

the Trajectory Generator to solve for the polynomial coefficients and generate the spatial 

and time trajectories of the system states (as well as the controls).  From there, a PI can 

be associated with the recently calculated trajectory and the IDVD Solver can iterate on 
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those varied parameters to reduce that PI.  In summary, the entire IDVD makes calls to 

the Trajectory Generator.  The Trajectory Generator, when examined alone, takes the 

endpoint conditions (position and velocity) and higher order derivatives (eg. acceleration) 

for attitude and translation and solves for the polynomial coefficients using Equations 

(121)–(128) for attitude and Equations (136)–(139) for translation.  The idea being that 

once the IDVD Solver has values for the varied parameters, the most current information 

on the RSO docking point can be used to reshape the trajectory, ensuring endpoint 

conditions are met.  Furthermore, it can be implemented in such a manner that also 

provides the controls necessary to track this trajectory, using the inner-loop controller to 

take care of small errors (Yakimenko et al. 2008). 

 

Figure 140.   Block diagram of real time trajectory reshaping concepts using IDVD.  

a. Solution Results with Inertia Uncertainty 

The trajectory resulting from the closed-loop implementation is shown in 

Figure 142.  For this case, the trajectory generator has incorrect information about the 

inertia of the RSO, specifically it is using a diag ([3,1,2]) inertia matrix (the same as 

previous examples) when the actual inertia matrix is diag ([1,2,3]).  This is a more 

extreme case of misidentification and was chosen to best illustrate the concept.  In 

actuality, the inertia matrix information of the RSO employed by the trajectory generator 

would most likely be more accurate, or simply use an identity inertia matrix. 
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In Figure 141, the actual trajectory of the RSO docking point is illustrated 

by a dotted red line with a circle marker highlighting a subset of points at which updates 

are provided to the RSO.  The dash/dot lines illustrate some of the projected trajectories 

of the RSO docking point based on the most current angular position and velocity 

information, propagated with the (incorrect) RSO inertia matrix currently used by the 

trajectory generator.  The dotted line shows the projected endpoint of the RSO docking 

point as it progresses though each iteration.  The projected RSO docking point and the 

actual RSO docking point converge to the same value as at tf, since the amount of time 

for the trajectory generator to project into the future, based on incorrect inertia 

information, where the RSO docking point will be decreases.  The thin colored lines 

show a subset of the reshaped trajectories at each timestep.  The blue dots show the 

resulting overall trajectory for the chaser vehicle, overlaid with intermittent models 

showing the resulting attitude of the vehicle.    
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Figure 141.   Results of the final trajectory for the close approach example having a misidentified inertia matrix IDVD real time reshaping.  
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Figure 142 shows a close-up, expanded view of the previously described trajectories.  

Information shown is the actual trajectory (red, circle), the projected endpoint (black, 

dash) and a sample of the overall projected trajectories based on state updates (green, 

dash/dot). Figure 143 illustrates the evolution of the current trajectory over time and the 

position of the chaser CM.   

 

Figure 142.   Exploded view of the RSO docking point information for a misidentified 
inertia matrix example. 
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Figure 143.   Spatial views of the resulting trajectories for the close approach example 
having a misidentified inertia matrix IDVD real time reshaping.  

b. Solution Results with Unknown Constant Torque 

For the next example, it is assumed the inertia matrix of the RSO is known 

by the trajectory generator, but an unknown torque exists, acting on the vehicle in the x-

body frame.  This can be thought of as a thruster that is stuck in the On mode, thus 

generating the disturbance.  The resulting plots, similar to those in the previous section 

are shown in Figures 144 and 145.  Figure 144 shows several of the reshaped trajectories, 

along with the overall trajectory for the chaser vehicle, while Figure 145 shows the time 

history for each translational component of the Chaser vehicle, as well as the evolution of 

the reshaped trajectories.  As in the previous example, the projected and actual endpoint 

of the RSO states converge to zero as the chaser vehicles converges to the final state. 
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Figure 144.   View of the close approach trajectory example with an unidentified, constant torque using IDVD real time reshaping. 
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Figure 145.   Spatial views of the resulting trajectories for the close approach example 
having an unidentified constant torque using IDVD real time reshaping. 

2. Resolving and Reoptimizing the Problem in Real Time 

If the solution of the IDVD could be computed in real time, with the definition of 

real time based on the requirements of the user/customer and the estimation attributes of 

the sensor system, the problem can be recomputed as the trajectory is traversed.  An 

illustrative example of this concept is given in Figure 146.  In this case, a switch is 

installed that allows the initial conditions to be updated based on the most current system 

states.  The problem can then be resolved using IDVD and the new resulting trajectory 

immediately updated.  The key difference between this implementation and the reshaping 

approach is that the trajectory is resolved and reoptimized based on the most current 

states of the RSO and the chaser vehicle.  Even though for this case the trajectory is 

resolved, one of the greatest benefits between the IDVD method is still that if the 

endpoint conditions change, the IDVD can use this information to tweak the trajectory. 
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Other methods, specifically pseudospectral, must resolve the entire problem in order to 

obtain a trajectory that, when the controls are propagated, would finish the maneuver in 

the correct position with the desired conditions. 

 

Figure 146.   Block diagram of real time trajectory recalculation concepts using IDVD.  

This concept is demonstrated on the same example stated in Chapter VII.D.1.b, 

employing the inertia uncertainty.  The trajectory generator is hampered by not knowing 

the true inertia of the RSO, but is receiving state updates and recalculating the trajectory 

at a rate of 1Hz.  This allows the current trajectory to be based on the most current known 

states of the chaser and the RSO.  The switch allows for the trajectory generation method 

to use the rapid-reshaping concept described in Chapter VII.D.1 with a 10 Hz update rate 

for the final 1 second, or endgame phase, of the trajectory since uncertainties in guidance 

may need to be corrected much more rapidly (Vaidyanathan et al. 2001).  This also 

demonstrates the IDVD’s ability to be integrated with other guidance systems to 

construct the best overall system. 

Figure 147 shows the plots of each recalculation (top), as well as the overall 

resulting trajectory (Bottom).  The multicolored segmented lines in the top figure 

illustrate each trajectory recalculation, occurring at 1-second intervals shown by the blue 

dots.  The segmented line on the 1m sphere shows black “x” marks representing the 

current projected location of the docking point at the calculated tf for each optimized 

trajectory. 
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Figure 147.   (Top) Overlaid recomputed trajectories.  (Bottom) Resulting overall trajectory 
based on the most current recalculation. 

3. Specific Waypoint Spacing in the Time Domain 

Another advantage to the specific IDVD formulation, and an enabling attribute 

that allowed the implementation of the closed-loop implementation concepts from the 
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previous sections, is the freedom to choose node or waypoints.  In previous work 

(Bevilacqua, Romano and Yakimenko 2009), integrating the inverse of speed factor that 

was based on switching times led to the user to be at the mercy of node spacing that is 

dependent upon the history of the speed factor itself.  This could lead to gaps in control 

and trajectory information that make the solution incapable of implementation.  This is 

also seen in application of pseudospectral direct methods (Hurni 2009) while using a 

commercial program for direct optimization of trajectories and having to add layer of 

control (and complexity) in order to correctly interpolate control information in between 

the node points of the solution.  Because of this, for the problem studied concerning a 

wheeled rover-like vehicle, the user is forced to use velocity and heading as a control 

vector, a layer above the intuitive controls of acceleration and angular rate.  An example 

where the constraints on the previous problem are relaxed to illustrate how the nodes of 

the solution get bunched together in regions where the speed factor is the greatest is 

considered.  This is because the node spacing is uniform with respect to the virtual 

argument τ, as shown in the bottom plot of Figure 148. 
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Figure 148.   Control history of a representative trajectory with uniform node spacing in the 

virtual domain.  
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The question posed is what dispersion of node points in the virtual domain will 

guarantee uniform node spacing in the time domain.  For the methods described in 

Chapters III and IV, the speed factor was chosen such it has an analytic expression for the 

integral of its inverse, which maps a specific value of t to the time domain as shown 

below: 

 
0

1
( )

t d
τ

ς
λ ς

= ∫ .      (149) 

This results in the ability to express τ as a function of t and vice versa. 

Once the final time is obtained from the initial solution, a set of evenly space 

nodes (or arbitrarily spaced nodes based on any inputs from the user) set in the time 

domain can be instantaneously converted to the virtual domain.  This new set of nodes in 

the virtual domain, when implemented, leads to the evenly spaced nodes in the time 

domain as shown in Figure 149. 
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Figure 149.   Control history of a representative trajectory with uniform node spacing in the 
time domain.  
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D. EXTENDED EXAMPLES USING INVERSE DYNAMICS IN THE 
VIRTUAL DOMAIN 

Up to this point, the same initial conditions have been used to analyze the optimal 

solution to a close approach problem, compare with a suboptimal rapid-trajectory 

generation technique, and demonstrate potential real time close-loop applications.  The 

IDVD (3rd) and IDVD (3rd–4th) method generated in the previous chapter is applied to 

several pseudorandom initial chaser conditions and scenarios.  First, 10 samples were 

developed to apply the IDVD technique.  From these 10 samples, the initial velocities of 

the spacecraft were assumed to be zero and the initial orientation of the chaser is assumed 

to be coincident with the orbit frame; both assumptions were taken from initial conditions 

used by McCamish (2007).  The pseudorandom initial positions of the chaser are chosen 

by first determining a vector them multiplying it by a uniformly distributed random 

number between 5 m and 10 m as shown in Equation (150).   
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with [ ] [ ) [ ]0 1 ,  0 2 ,  5 10x rrand rand randθ π∈ ∈ ∈ having uniform random 

distributions.  The desire was to have an equally distributed set of points in range (from 

5–10 m) and all directions, understanding that based on the given formula, the points 

would not necessarily be uniformly distributed about the volume housing those points.  

The solutions to the first ten generated initial conditions using IDVD (3rd) are illustrated 

in Figure 150.  Again, the initial conditions of the RSO were kept consistent with the 

previous examples from this manuscript, having a I = diag[3 1 2] and initial angular 

velocity of 0.25 radians/second in the y and z body frame and initial q = [0 0 0 1].  For 

the first set of ten shown in Figure 150, the average computational time was 21.0 

seconds. 
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Figure 150.   Trajectories for sample rendezvous problem for the first 10 random starting 
chaser positions with zero initial relative velocity.  

Next, over 1000 pseudorandom initial conditions were generated with varying 

initial relative velocity as well as position.  The maximum magnitude of the initial 

velocity was limited to 1 m/s to be consistent with “relative speed limit” constraints 

placed during close proximity operation again in the complementary work of McCamish 

(2007) as well as having the body frame aligned with the orbital frame.  This would be 

consistent with a GNC concept utilizing McCamish’s Artificial Potential Function 

modified algorithm up until it is time to perform the close approach for docking 

maneuver when the RSO has nonzero angular rates.  The solutions to the first 10 samples 

are shown in Figure 151.  Notice the presence of initial velocity for the chaser vehicles 

results in a modified path to the final conditions.  This is due to the fact the resulting 
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polynomial trajectory must shape itself to have a directional component at the beginning 

of the maneuver that will accommodate the different initial conditions.   

 

Figure 151.   Trajectories for sample rendezvous problem for the first 10 random starting 
chaser positions with nonzero initial relative velocity.  

The complete distribution of initial conditions is shown in Figures 152–155.  The 

maximum allowable final time was also increased to 15 seconds for the ensuing 

calculations.   
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Figure 152.   Distribution of the 1000 pseudorandom initial conditions tested.  

 
 
 
 

 
Figure 153.   Planar view of the 1000 pseudorandom initial conditions tested.  
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Figure 154.   Distribution of the initial chaser range for the 1000 pseudorandom samples 
generated.  
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Figure 155.   Distribution of the initial chaser velocity for the 1000 pseudorandom samples 
generated. 
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The IDVD (3rd) method was run using the 1000 sample and the mean time to calculate 

the solution was 34.3 seconds.  The mean time to complete the maneuver was 14.3081 

seconds and the mean energy PI was 0.2289.  The same 1000 initial condition set was 

also run using the IDVD (3rd–4th) method.  The mean of the energy PI was 0.2112, but 

the average run time was 228.9097 seconds.  A summary of the results is shown in Table 

28 for initial conditions on relative position and velocity pertaining to Figures 154 and 

155 and Table 29 pertaining to initial relative positions based on Figure 154 but starting 

with zero initial relative velocity.  Table 30 shows the results for varying the initial 

conditions on position and velocity of the chaser vehicle according to Figures 154 and 

155 but also varying the initial angular velocity of the RSO based on Figure 156.  

Although the IDVD (3rd–4th) method results in an overall average cost over the sample 

of initial conditions tested, the computational time was substantially more. 

IDVD   
(3rd)

IDVD      
(3rd-4th)

mean values
Min 

Energy
Min 

Energy
Final Time 14.3081 14.5191

Energy 0.2289 0.2112
Fuel 4.3124 4.2516

CPU Time (sec) 34.3 228.9  

Table 28.   Summary of performance indices and computational time for IDVD (3rd) and IDVD 
(3rd–4th) method using 1000 pseudorandom samples for varying the initial conditions 

of the chaser position and velocity. 

IDVD   
(3rd)

IDVD   
(3rd-4th)

mean values
Min 

Energy
Min 

Energy
Final Time 14.3094 14.6107

Energy 0.1742 0.1631
Fuel 3.8773 3.8544

CPU Time (sec) 32.9 191.0  
Table 29.   Summary of performance indices and computational time for IDVD (3rd) and IDVD 

(3rd–4th) method using 1000 pseudorandom samples for varying the initial conditions 
of the chaser position but having the initial relative velocity be equal to zero. 
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Figure 156.   Distribution of the initial RSO angular velocity for the 1000 pseudorandom 
samples generated. 

 

IDVD   
(3rd)

IDVD      
(3rd-4th)

mean values
Min 

Energy
Min 

Energy
Final Time 14.9716 14.9799

Energy 0.2138 0.1689854
Fuel 3.3867 3.2472

CPU Time (sec) 20.0 228.5  

Table 30.   Summary of performance indices and computational time for IDVD (3rd) and IDVD 
(3rd–4th) method using 1000 pseudorandom samples for varying the initial conditions 

for position and velocity of the chaser and initial angular velocity of the RSO. 
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VII. CONCLUSION 

This section summarizes the contributions and findings of this dissertation and is 

organized as follows: First, a summary of the research is presented.  This is followed by a 

summary of the contributions of this research followed by a discussion of the advantages 

and disadvantages pertaining to the different methods.  Finally, a recommendation for 

future study is presented. 

A. SUMMARY OF RESEARCH 

A six DoF, 20-state model of two spacecraft rendezvous is developed, one of 

which was controlled, the other considered to be passively tumbling.  A solution is 

obtained for the problem of close approach, up to the point of contact, using a   direct 

optimal control method.  The solution is then verified as optimal by way of an indirect 

method based on the MP.  Next, a trajectory generation method for spacecraft 

reorientation is developed, based on a quaternion construction of IDVD.  This new 

construction enables implementation of an IDVD trajectory generation method for the 

problem of a spacecraft performing a close approach maneuver to a tumbling object.  

Finally, the advantages of the IDVD method were exploited and demonstrated in 

simulated scenarios that employ closed-loop feedback.   

B. SUMMARY OF CONTRIBUTIONS 

Contributions of this dissertation are considered to have two distinct categories of 

impact, theoretical contributions, enhancing the overall understanding contribute to the 

overall body of knowledge, and practical contributions, advancing the current state of the 

art and moving the technology closer to implementation.  They are both summarized in 

the next several paragraphs. 

Summarizing, the minimum quadratic-control, minimum fuel and minimum time 

continuous optimal control 3D spacecraft rendezvous-docking problems are formulated 

for the first time in literature, and addressed using a direct collocation method, GPOPS. 

For both problems, the desired optimal trajectory of chaser spacecraft with respect to a 
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tumbling RSO is sought such that the desired docking points match in position and 

velocity. Moreover, the solutions obtained were verified in the numerical simulations 

based on the Minimum Principle. Those solutions included derivation of the adjoint 

equations, formulation of the necessary conditions for the optimal solution, and synthesis 

of the optimal controls. The results obtained from using the direct collocation method—

in this case the open source software of GPOPS—are very close to those obtained using 

with the Minimum Principle. It was also found that path constraints are necessary when 

solving for the optimal trajectory in order to prevent undesired collision of spacecraft. 

This was shown by the active path constraint that results in discontinuous costates upon 

contact with the constraint boundary. 

As expected, the GPOPS direct collocation (pseudospectral) method was found to 

be quite reliable and yielded the results relatively fast. Moreover, these results were also 

validated via propagation of the states based on the system dynamics, and optimal 

controls were found. That is what would be needed for possible onboard implementation 

of the developed algorithms. However, the GPOPS direct collocation method proved to 

be unable to produce the results fast enough so that it could be used in real time. Hence, 

in the nearest future, it only leaves off-line open-loop option to be possibly used on the 

real spacecraft. But even then, it was found that in case of a singular control, the method 

returns somewhat infeasible results that cannot be implemented.  The main simplifying 

hypothesis, considered in the numerical simulation presented in this section of the 

research, was the spherical inertial symmetry of both chaser and target spacecraft, as well 

as thrust control limits being applied in the orbital frame regardless of chaser spacecraft 

orientation. In order to achieve feasible controls in real time, this assumption needs to be 

removed, along with investigating the usage of different combined PIs and other direct 

methods based on inversing of the dynamics of the problem. 

This research then continued work on spacecraft rendezvous by modifying the 

previous problem formulation to include body mounted translational thrusters on the 

chaser spacecraft, as well as extensions on the final conditions. These new final 

conditions involved matching the velocity and position of the spacecraft docking points, 

as well as matching angular velocity and orientation. Inertia parameters on the RSO were 
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also set to different values, removing the assumption of an identity inertia matrix, in order 

to stimulate dynamic angular rates in all three axes. The problem was addressed again 

using the most plausible pseudospectral methods.  In addition, the optimal control 

structure was synthesized and analytical expressions for the transversality conditions 

were derived (exploiting the Minimum Principle) to compare those with the calculated 

solution. In this section of research, three PIs were examined. It was found that the 

minimum time solution exhibits the expected bang-bang control and the minimum fuel 

solution exhibits bang-off-bang characteristics. Assuming controls in the body frame as 

opposed to the orbital frame (as in the previous work by the authors), while making the 

problem more complex, seems to alleviate the singular control that appeared in the z-

translation, and therefore, made the GPOPS solution feasible. Another finding was that 

instead of addressing the minimum fuel problem, it was wiser to consider a minimum- 

energy problem instead. The reason for this is that although the minimum fuel solution 

happened to be about 30% more effective, it would be difficult to implement the control 

in practice because of the bang-off-bang control structure. The minimum energy solution, 

which lasts longer (but follows a similar path), assures smooth, easy-to-follow control 

time histories.  Furthermore, the minimum energy solution does not involve having the 

actuators saturated at the final time (a characteristic of bang-off-bang maneuvers for 

minimum fuel or bang-bang for minimum time), increasing the safety of the maneuver by 

having control margin available if a rapid corrective maneuver is needed and reducing the 

likelihood for or large disturbances due to plume impingement.  The minimum time 

solution (following a different path) does not contact any state constraints and therefore 

has continuous costates, while the minimum-control and minimum energy solutions 

contact the keep-out zone of the RSO, while approaching for docking. Finally, it was 

shown that the required CPU time greatly exceeds that of the maneuver itself, which as of 

now excludes pseudospectral direct collocation methods from being a candidate for 

onboard application. Instead, exploitation of other approaches, willing to sacrifice a 

fraction of the PI but decrease the required CPU time by several orders of magnitude, 

were investigated, as summarized below. 
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In the case of reorientation maneuvers, the IDVD method with the novel 

quaternion approximation functions proposed in this dissertation allows computing 

feasible solutions fast enough to be used onboard satellites for on-line computation of 

slew maneuvers. Moreover, because of the smooth controls' histories it can be 

implemented in the control schemes involving a feed-forward loop. For this specific 

implementation a form of the speed factor was chosen based on a combination of 

nonlinear equations as opposed to integrating dynamic equations based on having 

switching times of the controls act as varied parameters (Yakimenko 2000).  Because of 

this, compared to the true time-optimal solutions, the IDVD trajectories do not have the 

capability to generate a bang-bang control solution, which results in a slightly worse PI.  

However, smooth controls benefit other mission preferences of having desired rates at the 

endpoints as well as guaranteeing the endpoint constraints of the maneuver are always 

satisfied.  In addition, it is a definite advantage in rapidly changing acquisition or tracking 

scenarios and when the slewing spacecraft possesses low frequency flexible modes.  This 

formulation is later applied to situations where the attitude is coupled with other 

dynamics such as translational motion in rendezvous and docking applications. In this 

case, a simple eigenaxis slew would not meet mission criteria such as matching rotational 

motion. 

IDVD is further applied to the maneuver that has both translational and attitude 

motion, such as the case with the focus of this research involving close approach to a 

tumbling object.  The IDVD method developed is highly flexible, allowing for matching 

any mixed set of endpoint conditions, generating user specified waypoint spacing, and 

providing a mechanism for real time closed-loop trajectory reshaping.  Based on the 

trajectory generation results for the benchmark 3D scenario, the minimum-control 

solution was chosen for further study and implementation.  This was due to its inherent 

characteristic to conserve fuel, while providing specific safety qualities, such as not 

commanding actuator saturation (which would limit its ability to do rapid reactive 

maneuvers in case of closed loop implementation of higher-level emergency abort).     
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Within the IDVD method, there are still variations in trajectory parameterization 

techniques.  The IDVD 3rd method employs varying the 3rd derivative at the endpoints 

of the trajectory while the IDVD 3rd–4th method uses both the 3rd and 4th derivatives as 

varied parameters.  Because of this, the IDVD 3rd–4th method can provide a final 

trajectory that is lower in PI but at the cost of computational time.  The IDVD 3rd method 

can obtain a solution that is within 10% of the IDVD 3rd–4th method while only using 

15% of the computational time, based on results from 1000 samples with random initial 

conditions.  

C. CONSIDERATIONS AND RECOMMENDATIONS 

Trajectory generation by direct collocation methods have the benefit of providing 

a mathematically verifiable optimal solution.  The major drawback is the excessive 

computational time needed on current computing systems.  The resolution of the solution, 

and computational time, is highly dependent on the amount of nodes used to solve the  

problem.  Furthermore, the user cannot specify where the nodes are placed and this leads 

to complex interpolation schemes or adding an extra layer of control, increasing the 

complexity of the problem formulation in order to have sufficient control information to 

implement.  The benefits seen by IDVD methods are the rapid computational time that 

allows for a feasible solution to be generated, potentially onboard a spacecraft and in 

closed–loop.  Because of the analytic nature of its solution, high node trajectories can be 

generated without sacrificing computational time.  The ability to reshape itself when 

provided updated information on the RSO states and the docking point reinforce the 

overall robustness of the IDVD method for trajectory planning.  By increasing the order 

of the basis polynomials, thereby, increasing the varied parameters, solutions can be 

obtained that better minimize the PI, but at the cost of higher computational times.  

Furthermore, the node spacing of the control solution can be completely specified by the 

user, therefore, eliminating the previously discussed error incurred by interpolation of 

potentially complex control profiles or adding extra layers of control because of the lack 

of flexibility in the node spacing in the control solution set by the direct collocation 

methods, which are not guaranteed to be continuous.  It should be noted that using the 

IDVD formulation, constraints can be set on higher derivatives than the level of the 
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control vector.  For example, constraints on the jerk profiles can be enforced, while still 

using the acceleration profile as the control vector.  This attribute, which is in complete 

contrast other direct methods, is based on the analytical formulation of the trajectory.  For 

example, to set constraints on jerk using direct collocation method techniques, the control 

vector would have to at least be based on jerk (or even higher derivative) and not 

acceleration, again adding additional levels of complexity.   

Drawbacks to the IDVD method are that, while they are optimized to give the best 

trajectory based on the constraints of the basis polynomials, they cannot give the truly 

optimal solution described by the infinite dimensional optimal control problem, nor 

would an optimal solution be verifiable through Pontryagin’s MP due to the lack of 

costate information.  Also, maneuver duration is an issue that currently plagues both the 

direct and IDVD methods.  For IDVD this is due to the additional coupling of the attitude 

and translational motion through the speed factor.  If the speed factor is made small to 

accommodate constraints on translational motion and there is a nonzero requirement on a 

higher order derivative at an attitude maneuver endpoint (note this issue does not exist for 

translational maneuvers or rest-to-rest maneuvers), then the attitude maneuver may 

"wrap" or rotate beyond 2π in order to perform the maneuver to meet the endpoint 

requirements.  This is because, for the given set higher order derivative in the time 

domain, a reduction of speed factor at the end point (which may be needed to 

accommodate maneuvers with excessive times) would lead to a larger value for the 

respective higher order derivative in the virtual time domain since λ appears in the 

denominator of the conversion multiplier from time to virtual domains.  This also 

translates into a performing a larger maneuver in quaternion space to accommodate the 

higher derivative value in the virtual domain.  While the maneuver would still be 

completely feasible, the extra rotation may be undesired in the final approach.  Even 

though this is not an issue for the implementation discussed in this dissertation, it would 

need to be addressed for application on a subset of missions that have drastically different 

timescales associated with the attitude and translational maneuver.  Although this is 

easily rectified by simply setting constraints on the speed factor so the extra rotation does 

not happen, it may hinder the resulting PI.  Another approach is employing a trajectory 



 191

generation scheme for maneuvers starting farther away (far approach), which simply 

holds attitude fixed in the orbital frame (McCamish 2007) or pointing to the RSO, then 

switching to the final approach scheme discussed in this dissertation.  This is in line with 

operational methodology that would want to be pointing at the target as long as possible 

in order to get the most up-to-date information on the tumbling RSO before performing 

the rapid final approach maneuver at the last possible instant.  On the other hand, for the 

direct collocation methods, maneuvers that are particularly long in length are subject to 

large time gaps in between nodes, where no state or control information is available.  

Extra caution needs to be taken when employing such a solution. 

Summarizing, two novel guidance strategies for final approach to a tumbling 

object are developed in this dissertation.  One is based on Inverse Dynamics in the 

Virtual Domain, employing a newly formulated quaternion approach, and the other is a 

novel formulation that employs direct collocation methods for optimal trajectory 

generation.  While the direct collocation method formulation is too computationally 

expensive to be employed, it provides a mathematically verifiable optimal baseline for 

the maneuvers.  While the method based on IDVD cannot exactly match the optimal 

solution, it can provide a feasible that is optimized stemming from set of basis functions 

with a fraction of the computational time of the direct method.  This and other attractive 

features discussed, allows for exploitation of several real time implementation concepts.  

It is recommended that the IDVD method be employed for situations where the 

computational cost of the solution outweighs the PI associated with the state and control 

histories.  The direct collocation, or pseudospectral, method should be used in 

circumstances where computational time is not a concern, but a truly optimal solution 

based on the state and control variables is desired, such as base lining scenarios and 

finding limits of specific technologies. 
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D. POSSIBLE FUTURE DEVELOPMENTS 

The following research problems remain open for possible follow-up efforts: 

1. Investigate effects of different sets of basis function for trajectory 

generation and overall effect of using IDVD methods to seed initial 

guesses for pseudospectral optimal control solvers. 

2. Analyze performance of trajectory tracking in simulation. 

3. Experimental validation on real autonomous vehicles. 

4. Integration with current research involving navigation and target 

identification. 
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APPENDIX. QUATERNION PROPERTIES 

A quaternion is a four-dimensional vector that is used to express orientation of a 

rigid body.  It is composed of a scalar, s, and a vector portion, v.  There are several 

representations and formulation of quaternions and their associated properties in 

literature.  Throughout this dissertation, the properties in this Appendix will be employed 

(Titterton and Weston 1997; Sarkka 2007). 
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Quaternion Logarithm: 
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Quaternion Exponential: 
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Quaternion Conjugate: 
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Quaternion Inverse: 
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Quaternion Product: 
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